فی دوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی دوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحلیل پایداری دیوار خاک مسلح تحت اثر بار انفجار

اختصاصی از فی دوو تحلیل پایداری دیوار خاک مسلح تحت اثر بار انفجار دانلود با لینک مستقیم و پر سرعت .

تحلیل پایداری دیوار خاک مسلح تحت اثر بار انفجار


تحلیل پایداری دیوار خاک مسلح تحت اثر بار انفجار مقاله با عنوان: تحلیل پایداری دیوار خاک مسلح تحت اثر بار انفجار
نویسندگان: غلامرضا نوری ، رضا هاشمی
محل انتشار: هشتمین کنگره ملی مهندسی عمران – دانشگاه صنعتی نوشیروانی بابل - 17 و 18 اردیبهشت 93
فرمت فایل: PDF و شامل 8 صفحه می باشد.

چکیده:
به دلیل کاربرد دیوارهای خاک مسلح در کوله پل‌ها، فرودگاه‌ها، انبارهای مهمات، پایانه‌های سوختی و سایر مکان‌هایی که در معرض انفجار قرار دارند، بررسی رفتار این سازه‌ها تحت تأثیر بارهای انفجار اهمیت دارد. همچنین استفاده از ژئوسنتتیک در دیوارهای خاکی از جمله روش‌های نوینی می‌باشد که بکارگیری آن به عنوان مسلح کننده، قابلیت انعطاف‌پذیری را برای سازه دیوار ایجاد می‌نماید. در این مقاله با توجه به هندسه در نظر گرفته شده برای دیوار خاک مسلح با ژئوسنتتیک، ابتدا پایداری دیوار تحت بارهای استاتیکی و شبه استاتیکی بررسی و سپس تأثیر پارامترهای مختلفی از قبیل میزان مواد منفجره و فاصله انفجار از دیوار خاک مسلح بر رفتار دیوار با استفاده از نرم‌افزار ABAQUS مطالعه شده است. میزان تغییرمکان افقی و همچنین تغییرمکان قائم (نشست) برای انفجارهای مختلف معادل با میزان تی ان تی متفاوت با توجه به متغیرهای در نظر گرفته شده مورد بررسی قرار گرفت. نتایج نشان داد، با افزایش میزان مواد منفجره و کاهش فاصله انفجار تغییرشکل‌ها افزایش می‌یابند. به ازای انفجاری معادل با 250 کیلوگرم تی ان تی، با افزایش فاصله انفجار از 2.5 به 10 متر، حداکثر تغییر مکان قائم و افقی دیوار به ترتیب حدود 60 و 46 درصد کاهش می‌یابد. همچنین افزایش قدرت انفجار نیز موجب افزایش جابجایی قائم و افقی دیوار گردید. با افزایش میزان مواد منفجره از 250 به 700 کیلوگرم میزان تغییر مکان افقی 17 درصد افزایش و همچنین با افزایش میزان مواد منفجره به 1000 کیلوگرم افزایش تغییر مکان به 35 درصد می‌رسد. این تغییرات در جابجایی قائم به ترتیب 50 و 56 درصد می‌باشد.

** توجه: خواهشمندیم در صورت هرگونه مشکل در روند خرید و دریافت فایل از طریق بخش پشتیبانی در سایت مشکل خود را گزارش دهید. **

دانلود با لینک مستقیم


تحلیل پایداری دیوار خاک مسلح تحت اثر بار انفجار

تحقیق درباره مدلسازی مناسب بار برکنش در زیر سدهای وزنی

اختصاصی از فی دوو تحقیق درباره مدلسازی مناسب بار برکنش در زیر سدهای وزنی دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره مدلسازی مناسب بار برکنش در زیر سدهای وزنی


تحقیق درباره مدلسازی مناسب بار برکنش در زیر سدهای وزنی

 

• مقاله با عنوان: تحقیق درباره مدلسازی مناسب بار برکنش در زیر سدهای وزنی  

• نویسندگان: محمد یعقوبی سربیشه ، محمد تقی احمدی  

• محل انتشار: هشتمین کنگره ملی مهندسی عمران - دانشگاه صنعتی نوشیروانی بابل - 17 و 18 اردیبهشت 93  

• محور: سازه های هیدرولیکی  

• فرمت فایل: PDF و شامل 8 صفحه می باشد.

 

چکیــــده:

میزان بار برکنش (uplift) و نحوه‌ی توزیع آن در زیر سدهای وزنی، تأثیر بسزایی بر تنش‌های موجود در این ناحیه و در نتیجه پایداری اینگونه سدها دارد. آیین نامه‌های مختلف با توجه به پارامترهایی نظیر میزان ارتفاع آب در مخزن سد و نیز عمق آب در پایاب، یک توزیع چند خطی را برای بار برکنش در نظر می‌گیرند. در این تحقیق، مدل سازی از چند نوع سد وزنی به همراه پی و مخزن آن‌ها، با استفاده از روش اجزای محدود در محیط توامان تراوش و تنش، به منظور بررسی میزان دقت اینگونه توزیع‌ها صورت گرفت. در کلیه تحلیل‌ها، بدنه‌ی سد کاملاً نفوذ ناپذیر در نظر گرفته شده است. همچنین توده سنگ پی به صورت یک محیط همگن و همسان فرض شده و متناسباً به آن نفوذ پذیری‌های مناسب اختصاص داده شده تا مسأله‌ی تراوش آب در محیط پی، به طور کامل مدلسازی شده و میزان فشار منفذی در هر نقطه از آن در حالت‌های عملکردی مختلف پرده تزریق به صورت دقیق محاسبه شود. از مقایسه‌ی بین تنش‌های ایجاد شده در محل اتصال سد و پی در این مدل‌ها، با تنش‌های حاصل از در نظر گرفتن توزیع توصیه شده توسط آیین نامه‌های رایج و نوین سد سازی نظیر انتشارات اداره‌ی مهندسی ارتش آمریکا (USACE) در زیر سد، مشخص شد که الگو های رایج در اکثر نقاط خطاهایی در حدود 10 تا 15 درصد داشته و حتی در حالت پی همگن، امکان وقوع خطایی بیش از 40 درصد در همسایگی پاشنه سد وجود دارد. این پدیده در برخی موارد می‌تواند ایمنی سدهای بتنی را کاملاً تحت تاثیر قرار دهد. در این تحقیق الگویی کاربردی ولی متکی بر مدلسازی پیشرفته مذکور برای توزیع بار برکنش در زیر سد معرفی می‌گردد تا سرفصل تحولی در طراحی های آینده باشد.

________________________________

** توجه: خواهشمندیم در صورت هرگونه مشکل در روند خرید و دریافت فایل از طریق بخش پشتیبانی در سایت مشکل خود را گزارش دهید. **

** توجه: در صورت مشکل در باز شدن فایل PDF مقالات نام فایل را به انگلیسی Rename کنید. **

** درخواست مقالات کنفرانس‌ها و همایش‌ها: با ارسال عنوان مقالات درخواستی خود به ایمیل civil.sellfile.ir@gmail.com پس از قرار گرفتن مقالات در سایت به راحتی اقدام به خرید و دریافت مقالات مورد نظر خود نمایید. **


دانلود با لینک مستقیم


تحقیق درباره مدلسازی مناسب بار برکنش در زیر سدهای وزنی

حساسیت سنجی روش های متداول اعمال بار برکنش در سدهای وزنی نسبت به ارتفاع سد

اختصاصی از فی دوو حساسیت سنجی روش های متداول اعمال بار برکنش در سدهای وزنی نسبت به ارتفاع سد دانلود با لینک مستقیم و پر سرعت .

حساسیت سنجی روش های متداول اعمال بار برکنش در سدهای وزنی نسبت به ارتفاع سد


حساسیت سنجی روش های متداول اعمال بار برکنش در سدهای وزنی نسبت به ارتفاع سد

• مقاله با عنوان: حساسیت سنجی روش های متداول اعمال بار برکنش در سدهای وزنی نسبت به ارتفاع سد 

• نویسندگان: محمد یعقوبی سربیشه ، محمد تقی احمدی 

• محل انتشار: دهمین کنگره بین المللی مهندسی عمران - دانشگاه تبریز - 15 تا 17 اردیبهشت 94 

• فرمت فایل: PDF و شامل 8 صفحه می باشد.

 

 

 

چکیــــده:

یکی از عوامل مهم و تاثیرگذار در پایداری سدهای وزنی و طراحی آن، میزان بار برکنش و نحوه‌ی توزیع آن در زیر این نوع از سدها می‌باشد. آیین نامه‌های مختلف با توجه به پارامترهایی نظیر میزان ارتفاع آب در مخزن سد و نیز عمق آب در پایاب، یک توزیع چند خطی را برای بار برکنش در زیر سد در نظر می‌گیرند. در این تحقیق، مدل سازی از چند سد وزنی از نوع پاین فلت به همراه پی و با ارتفاع‌های مختلف، با استفاده از روش اجزای محدود در محیط توامان تراوش و تنش، به منظور حساسیت سنجی اینگونه توزیع ها نسبت به ارتفاع سد صورت گرفت. در کلیه تحلیل‌ها، بدنه‌ی سد کاملاً نفوذناپذیر در نظر گرفته شده است. همچنین توده سنگ پی به صورت یک محیط همگن و همسان فرض شده و متناسب به آن نفوذپذیری‌های مناسب اختصاص داده شده است تا مسأله‌ی تراوش آب در محیط پی، به طور کامل مدلسازی دیده و میزان فشار منفذی در هر نقطه از آن در حالت‌های حضور و عدم حضور پرده تزریق به صورت دقیق با در نظر گرفتن اندر کنش هیدرو مکانیکال دو میدان تنش و تراوش محاسبه شود. از مقایسه‌ی بین تنش های ایجاد شده در محل اتصال سد و پی در این مدل ها، با تنش‌های حاصل از توزیع بار برکنش مطابق آیین نامه‌ی US-ACE که یکی از پیشرو ترین مراجع در این امر می‌باشد، در زیر سد، مشخص شد که میزان خطای این گونه الگوهای رایج با ارتفاع سد رابطه‌ی مستقیم دارد به طوری که با افزایش ارتفاع سد میزان خطای مربوط به تنش در بخش حساس شالوده سد حتی تا 12 برابر خطای قابل انتظار در سدهای کوتاه تر نیز افزایش پیدا می‌کند. این مساله در برخی موارد می‌تواند ایمنی سد را کاملا تحت تاثیر قرار دهد. این تحقیق ضرورت استفاده از روش‌های دقیق‌تر در برآورد میزان بار برکنش در زیر سدهای وزنی بلند را نشان می‌دهد.

________________________________

** توجه: خواهشمندیم در صورت هرگونه مشکل در روند خرید و دریافت فایل از طریق بخش پشتیبانی در سایت مشکل خود را گزارش دهید. **

** توجه: در صورت مشکل در باز شدن فایل PDF مقالات نام فایل را به انگلیسی Rename کنید. **

** درخواست مقالات کنفرانس‌ها و همایش‌ها: با ارسال عنوان مقالات درخواستی خود به ایمیل civil.sellfile.ir@gmail.com پس از قرار گرفتن مقالات در سایت به راحتی اقدام به خرید و دریافت مقالات مورد نظر خود نمایید. **


دانلود با لینک مستقیم


حساسیت سنجی روش های متداول اعمال بار برکنش در سدهای وزنی نسبت به ارتفاع سد

شرایط غیرعادی عملکرد ترانسفورماتور در حالات بار غیرسینوسی، نامتعادلی بار و نامتعادلی ولتاژ تغذیه بهمراه تحلیل و مدل سازی

اختصاصی از فی دوو شرایط غیرعادی عملکرد ترانسفورماتور در حالات بار غیرسینوسی، نامتعادلی بار و نامتعادلی ولتاژ تغذیه بهمراه تحلیل و مدل سازی دانلود با لینک مستقیم و پر سرعت .

شرایط غیرعادی عملکرد ترانسفورماتور در حالات بار غیرسینوسی، نامتعادلی بار و نامتعادلی ولتاژ تغذیه بهمراه تحلیل و مدل سازی


شرایط غیرعادی عملکرد ترانسفورماتور در حالات بار غیرسینوسی، نامتعادلی بار و نامتعادلی ولتاژ تغذیه بهمراه تحلیل و مدل سازی

شرایط غیرعادی عملکرد ترانسفورماتور در حالات بار غیرسینوسی، نامتعادلی بار و نامتعادلی ولتاژ تغذیه بهمراه تحلیل و مدل سازی

100 صفحه در قالب word

به همراه کدهای نوشته شده در سیمولینک MATLAB

 

 

 

فصل اول           

1-1 مقدمه    1

1-2 ترانسفورماتور و انواع آن   2

1-3 هارمونیک های سیستم قدرت   3

1-4 مهم ترین منابع هارمونیکی   3

1-5 هارمونیک ها و اثرات آنها بر ترانسفورماتورها     4

1-6 مروری بر مقالات منتشرشده   6

 

فصل دوم :

فصل دوم : شرایط کاری ترانسفورماتور   11

2-1مقدمه   .11

2-2 شرایط غیر عادی برای کارکرد ترانسفورماتور   11

2-3 عملکرد ترانسفورماتور در توان هایی غیر از توان نامی و دمای محیط متفاوت با IEC 76 :   12

2-4 عملکرد ترانسفورماتور در ولتاژها و فرکانس های غیر نامی   12

2-5  عملکرد ترانسفورماتور برای بارهای نامتعادل   14

2-6  عملکرد ترانسفورماتور تحت ولتاژ های نامتعادل   21

 

فصل سوم :

فصل سوم: حل مسئله و تحلیل مدلها    25

3-1  مقدمه    25

3-2  نرم افزار مورد استفاده   26

3-3  تحلیلگر دو بعدی (Opera 2D)   27

       3-3-1 تحلیلگر گذرای دو بعدی(Opera-2d/TR)   .........28

       3-3-2 شرایط مرزی   30

3-4 تحلیل ترانسفورماتور با استفاده از Opera-2d/TR   32

     3-4-1 مدل سازی ترانسفورماتور با توجه به هندسه آن   ..35

     3-4-2 خصوصیات فیزیکی اجزای سازنده ترانسفورماتور    39

     3-4-3 اعمال مدار خارجی به مدل   .......................................41

 

فصل چهارم :

4-1 مقدمه       46

4-2 نحوه مدل سازی تحت شرایط عملکرد غیر عادی ترانسفورماتور    ...................................46

4-2-1 بار غیر سینوسی        46

4-2-2 بار نامتعادل       ......... 52

4-2-3 شرایط ولتاژ تغذیه نامتعادل    ...........................54

4-2-4 بار غیر سینوسی و ولتاژ تغذیه نامتعادل   .......58

 

فصل پنجم:

5-1 مقدمه       61

5-2 تحلیل فرکانسی ترانسفورماتور در شرایط بار غیرسینوسی   ....61

5-3 تحلیل فرکانسی ترانسفورماتور در شرایط بار غیرسینوسی و ولتاژ تغذیه نامتعادل   .....69

 

فصل ششم:

6-1 مقدمه       73

6-2 عملکرد ترانسفورماتور در شرایط بار غیرسینوسی    ...........73

6-2-1 روش های تخمین محتوای هارمونیکی بار    ..73

6-2-2 اثر بارهای غیر خطی بر تلفات بی باری ترانسفورماتور    ..............................76

6-2-2 اثر بارهای غیر خطی بر تلفات بارداری ترانسفورماتور   .................................77

6-2-3 اصلاح ظرفیت نامی ترانسفورماتور تحت بار غیر سینوسی   .........................81

6-2-4 اثر افزایش مرتبه های هارمونیکی جریان بار بر عملکرد ترانسفورماتور   ...86

6-3 عملکرد ترانسفورماتور در شرایط ولتاژ تغذیه نامتعادل    ...88

   6-3-1 اثر ولتاژ تغذیه نامتعادل بر تلفات ترانسفورماتور    88

6-4 عملکرد ترانسفورماتور تحت بار غیرسینوسی و ولتاژ تغذیه نامتعادل    ...........................90

6-4-1 اثر بار غیرسینوسی و ولتاژ تغذیه نامتعادل بر تلفات ترانسفورماتور   .........90

6-4-1-1 اثر افزایش نامتعادلی ولتاژ تغذیه بر عملکرد ترانسفورماتور با بار غیرسینوسی ............91

                      6-4-1-2 اثر افزایش اعوجاج جریان بار غیرسینوسی بر عملکرد ترانسفورماتور با ولتاژ تغذیه

                      نامتعادل      .................92

6-4-2 اصلاح ظرفیت نامی ترانسفورماتور تحت بار غیر سینوسی و ولتاژ تغذیه نامتعادل   94

نتیجه گیری و پیشنهادات       ................99

منابع و مراجع

 

 

 

چکیده:

ترانسفورماتورها بر اساس ساختمان و نوع عملکرد، انواع متفاوت زیر را دارند:

  • ترانسفورماتورهای قدرت
  • ترانسفورماتورهای توزیع
  • ترانسفورماتورهای شیفت دهنده فاز
  • ترانسفورماتورهای یکسو کننده
  • ترانسفورماتورهای خشک
  • ترانسفورماتورهای روغنی
  • ترانسفورماتورهای اندازه گیری
  • تنظیم کننده های ولتاژ پله ای
  • ترانسفورماتورهای ولتاژ ثابت

ترانسفورماتورهای قدرت بین ژنراتور و سیستم های انتقال مورد استفاده قرار می گیرند و معمولا با توان 500 kVA و بیشتر درجه بندی می شوند. سیستم های قدرت شامل نیروگاه های تولید و توزیع انرژی، و اتصالات درون سیستم یا اتصالاتی با سیستم های مجاورهستند. پیچیدگی این سیستم منجر به گستردگی تنوع ولتاژهای توزیع و انتقال می شود.

هر ترانسفورماتوری که ولتاژ اولیه را کاهش داده و آنرا به ولتاژ توزیع یا ولتاژ مورد استفاده مصرف کننده تبدیل کند، ترانسفورماتور توزیع نامیده می شود. اگرچه بسیاری از استانداردهای صنعتی اصطلاح ترانسفورماتور توزیع را به ترانسفورماتورهایی با درجه بندی 5-500 kVA نسبت می دهند، ولی ترانسفورماتورهای توزیع می توانند درجه بندی های کم تر و بیشتر( 5000 kVA و بیشتر) نیز داشته باشند. بنابراین استفاده از درجه بندی به عنوان مقیاسی جهت تعیین نوع ترانسفورماتور چندان قابل قبول نیست.

مطالعه یک سیستم جدید به منظور انتخاب ترانسفورماتور با ظرفیت مناسب که هنوز مورد بهره برداری قرار نگرفته است، کار بسیار پیچیده تری است. دلیل این امر مشخص نبودن نوع مصرف از قبیل تجاری، خانگی، صنعتی یا اداری و نوع تجهیزات مرتبط با آن است. پس از مشخص شدن نوع تجهیزات، قدم بعدی دستیابی به مشخصه هارمونیکی آنهاست که لازمه محاسبه ضریب  می باشد. از آنجا که ترانسفورماتورهای توزیع معمولا انواع مختلف بار را تغذیه می کنند، و شکل موج جریان به علت وجود بارهای خطی و غیر خطی مختلف، مشخصه هارمونیکی متفاوتی از مشخصه هارمونیکی هر کدام از بارها دارد.

روش ضریب  ساده منجر به حصول نتایج چندان دقیقی نخواهد شد. لذا برای طراحی سیستم هایی با انواع مختلف تجهیزات که بار غیرسینوسی متفاوت از هم دارند، روش های خاصی مورد نیاز است.برای انتخاب ترانسفورماتور در چنین سیستم هایی روشی به نام روش جریان هارمونیک معادل پیشنهاد شده است. در این روش برای هر بار غیر خطی با ضریب  معین، یک جریان هارمونیکی معادل نسبت داده می شود. سپس مقادیر به دست آمده برای هر بار غیر خطی با در نظر گرفتن توان الکتریکی آن به صورت وزن دار با هم جمع شده و جریان هارمونیکی معادل کل برای چند بار غیر خطی به دست می آید که با استفاده از آن می توان ضریب نامی  برای ترانسفورماتور انتخابی را تخمین زد.

در این پروژه، می خواهیم شرایط غیرعادی عملکرد ترانسفورماتور را شرح داده و به صورت تحلیلی مورد بررسی قرار دهیم.. نحوه مدل سازی جامع ترانسفورماتور به وسیله نرم افزار اجزاء محدود Opera-2D  به تفضیل معرفی و چگونگی مدل سازی شرایط بار غیرسینوسی، نامتعادلی بار و نامتعادلی ولتاژ تغذیه با توجه به دیاگرام تک خطی ترانسفورماتور و امکانات موجود در این نرم افزار شرح داده خواهد شد.

بررسی عملکرد ترانسفورماتور توزیع در شرایط بار غیرسینوسی منجر به ارائه روشی جهت اصلاح مقادیر نامی ترانسفورماتورهای تغذیه کننده بارهای غیرخطی میشود. این روش بر اساس محاسبه تلفات فوکوی سیم پیچ به وسیله تحلیل گر Opera-2d/TR  صورت خواهد گرفت. مقایسه نتایج به دست آمده از روش FEM با روش بیان شده در استاندارد IEEE C57-110 تاییدی بر دقت بالای محاسبات انجام شده خواهد بود.

تحلیل فرکانسی سیگنال های ولتاژ و جریان ترانسفورماتور با استفاده از تبدیل فوریه(FFT)  به درک هرچه بهتر عملکرد ترانسفورماتور در شرایط مورد مطالعه خواهد انجامید و تبیین کننده چگونگی تاثیر این شرایط بر اصلاح مقادیر نامی تجدید شده ترانسفورماتور میگردد.

 

فصل اول

1-1 مقدمه:

امروزه، انرژی الکتریکی در مقیاسی وسیع به صورت سیستم های سه فازه به ولتاژهای 2/13 و 21 کیلو ولت و قدرت های 150، 250 و 600 مگا ولت آمپر تولید می شود. این انرژی الکتریکی عموما در ولتاژهای بیش از 110، 132، 275، 400، 570 و 750 کیلو ولت انتقال می یابد.  بدین منظور ترانسفورماتورهای سه فاز افزاینده بکار می روند و در مراکز مصرف و پستها، انرژی الکتریکی انتقال یافته به ولتاژهایی در حدود 6600، 4600 و 2300 کاهش یافته و توزیع می شوند. آنگاه ولتاژ مصارف شهری را تا حدود 440، 380، 220 و 110 ولت کاهش می دهند.

1-2: ترانسفورماتور و انواع آن

ترانسفورماتورها تجهیزاتی هستند که انرژی الکتریکی را از یک مدار به مداری دیگر و از طریق تزویج مغناطیسی سیم پیچی ها انتقال می دهند. در تمامی موارد به جز اتوترانسفورماتورها، هیچگونه اتصال الکتریکی مستقیمی بین مدارهای مزبور وجود ندارد. هنکام عبور جریان متناوب از یک هادی یک میدان مغناطیسی در اطراف آن هادی پدید می آید. حال اگر هادی دیگری در میدان مغناطیسی تولید شده توسط هادی اول قرار گیرد به گونه ای که خطوط میدان هادی را قطع کند، آنگاه یک ولتاژ در هادی ثانویه القاء می شود. استفاده از میدان مغناطیسی یک سیم پیچ برای القاء ولتاژ در سیم پیچ ثانویه قاعده ای است که کارکرد ترانسفورماتور بر آن اساس استوار است.

ترانسفورماتورها بر اساس ساختمان و نوع عملکرد، انواع متفاوت زیر را دارند:

  • ترانسفورماتورهای قدرت
  • ترانسفورماتورهای توزیع
  • ترانسفورماتورهای شیفت دهنده فاز
  • ترانسفورماتورهای یکسو کننده
  • ترانسفورماتورهای خشک
  • ترانسفورماتورهای روغنی
  • ترانسفورماتورهای اندازه گیری
  • تنظیم کننده های ولتاژ پله ای
  • ترانسفورماتورهای ولتاژ ثابت

ترانسفورماتورهای قدرت بین ژنراتور و سیستم های انتقال مورد استفاده قرار می گیرند و معمولا با توان 500 kVA و بیشتر درجه بندی می شوند. سیستم های قدرت شامل نیروگاه های تولید و توزیع انرژی، و اتصالات درون سیستم یا اتصالاتی با سیستم های مجاورهستند. پیچیدگی این سیستم منجر به گستردگی تنوع ولتاژهای توزیع و انتقال می شود.

ترانسفورماتورهای قدرت عموماً به صورت افزاینده در نیروگاه، یا به صورت کاهنده برای تغذیه سیستم های توزیع به کار می روند. این ترانسفورماتورها به صورت تک فاز و سه فاز هستند.

ساختمان ترانسفورماتورها به کاربرد آنها وابسته است. ترانسفورماتورهایی که در مکانهای سربسته به کار می روند، عمدتا از نوع خشک هستند. در مکان های سرباز، معمولاًاز ترانسفورماتورهای نوع روغنی استفاده می شود.

هر ترانسفورماتوری که ولتاژ اولیه را کاهش داده و آنرا به ولتاژ توزیع یا ولتاژ مورد استفاده مصرف کننده تبدیل کند، ترانسفورماتور توزیع نامیده می شود. اگرچه بسیاری از استانداردهای صنعتی اصطلاح ترانسفورماتور توزیع را به ترانسفورماتورهایی با درجه بندی 5-500 kVA نسبت می دهند، ولی ترانسفورماتورهای توزیع می توانند درجه بندی های کم تر و بیشتر( 5000 kVA و بیشتر) نیز داشته باشند. بنابراین استفاده از درجه بندی به عنوان مقیاسی جهت تعیین نوع ترانسفورماتور چندان قابل قبول نیست.

با اضافه شدن شبکه های ولتاژ قوی به سیستم های محلی، سیستم های با اتصال موازی و یا خطوط انتقال با سطوح ولتاژ متفاوت به صورت استاندارد در آمدند.امروزه برای افزایش قابلیت اطمینان منابع تغذیه الکتریکی و امکان انتقال توان الکتریکی در مسافت های زیاد، شیکه های قدرت با ولتاژ بسیار قوی به سیستم قدرت متصل گردیده اند. پایدار سازی این شبکه ها نیازمند کنترل پخش بار است و بدین منظور از ترانسفورماتورهای شیفت دهنده فاز استفاده می شود.

مدارات الکترونیک قدرت برای تبدیل جریان متناوب به جریان مستقیم به کار می روند. این مدارات، یکسو کننده نامیده می شوند. ادوات الکترونیک قدرتی که جریان مستقیم را به جریان متناوب تبدیل می کنند، اینورتر نام دارند. هرگاه یکی از سیم پیچی های ترانسفورماتور به یکی از این مدارات متصل شود، آن را ترانسفورماتور مبدل یا یکسوکننده گویند. در استاندارد IEC این ترانسفورماتورها تحت عنوان ترانسفورماتورهای مبدل و در استاندارد IEEE تحت عنوان ترانسفورماتورهای یکسوکننده ذکر شده اند.

درترانسفورماتور نوع خشک عایق در برگیرنده سیم پیچی ها گاز یا یک ترکیب شیمیایی جامد است. این ترانسفورماتورها در مقایسه با ترانسفورماتورهای روغنی، سبک تر و غیر قابل اشتعال هستند.

ترانسفورماتورهای اندازه گیری برای جداسازی مدار اصلی از تجهیزات اندازه گیری و کنترل مورد استفاده قرار می گیرند. این جدا سازی با تزویج مغناطیسی دو مدار حاصل می شود. علاوه بر جداسازی، مقادیر ولتاژ و جریان به سطوح ایمن تر کاهش داده می شوند. ترانسفورماتورهای اندازه گیری به دو دسته ترانسفورماتورهای ولتاژ و ترانسفورماتورهای جریان تقسیم می شوند.

سیستم های توزیع باید به گونه ای طراحی شوند که مقادیر ولتاژ همیشه در محدوده مجاز استاندارد قرار گیرند. این امر از طریق استفاده از تجهیزات کنترل ولتاژ و طراحی موثر سیستم امکان پذیر است . ترانسفورماتورهای قدرت تنظیم کننده، تنظیم کننده های ولتاژ پله ای سه فاز و تنظیم کننده های ولتاژ پله ای تک فاز از جمله تجهیزات ترانسفورماتوری هستند که برای بهبود پروفایل ولتاژ سیستم قدرت به کار می روند.

ترانسفورماتورهای ولتاژ ثابت سال های زیادی به عنوان وسیله ایزولاسیون سر و صدا به کار رفته اند. در سال های اخیر، این ترانسفورماتورها به عنوان وسیله ای جهت حفاظت از فرورفتگی ولتاژ  در تجهیزات صنعتی و تجاری کاربرد پیدا کرده اند.

1-3 هارمونیک های سیستم قدرت

در سالیان اخیر کیفیت توان به دلیل افزایش پیچیدگی سیستم های قدرت و توسعه روزافزون تجهیزات الکتریکی ، اهمیت زیادی یافته است. یکی از مهم ترین مسایل کیفیت توان، هارمونیک در سیستم های قدرت است.

به طور کلی، اغتشاشات موجهای ولتاژ و جریان بر حسب فرکانس های هارمونیکی که ضرائب صحیحی از فرکانس اصلی هستند، بیان می شوند. برای نخستین بار در سال 1985 هارمونیک های سیستم قدرت ( توسط آریلاکا ) منتشر شد[1] که ضمن جمع آوری تجربیات دهه های قبل، به توصیف دلایل حضور ولتاژها و جریان های هارمونیکی و همچنین عوامل ایجاد، استانداردها، اندازه گیری، شبیه سازی و حذف آنها پرداخت.

از آن پس، افزایش غیر منتظره تعداد و مقادیر نامی عناصر حالت جامد[1]    برای کنترل سیستم ها و تجهیزات قدرت سبب بروز مشکلات هارمونیکی در داخل و خارج سیستم قدرت گردید. حذف هارمونیک ها همواره از روش های پر هزینه و غیر متداول است و معمولا طبق نظریه " پیشگیری بهتر از درمان " ، تفکر و سرمایه گذاری بیشتری در مراحل طراحی انجام می پذیرد. لکن، روش های پیشگیری نیز پر هزینه هستند و بهینه سازی آنها که از مراحل اساسی طراحی بشمار می رود، به شدت متکی به تخمین های تئوری است.

1-4 مهم ترین منابع هارمونیکی

منابع هارمونیکی را می توان به سه گروه زیر تقسیم کرد:

  • تعداد زیادی تجهیزات غیر خطی توزیع شده در سیستم با مقادیر نامی محدود
  • بار های غیرخطی بزرگ با تغییرات پیوسته و تصادفی
  • مبدل های استاتیکی بزرگ و قطعات الکترونیک قدرت در حدود مقادیر نامی سیستم.

گروه اول شامل پلهای دیودی تک فاز و منابع تغذیه بسیاری از تجهیزات فشار ضعیف ( مانند رایانه های شخصی، تلویزیونها و غیره ) می باشند. چراغهای تخلیه گازی[2] نیز در این گروه قرار دارند. اگرچه مقادیر نامی هر یک به تنهایی قابل اغماض است ولی با توجه به تعداد زیاد و فقدان دوگانگی فاز، اثرات تجمعی آنها می توانند قابل ملاحظه باشند.

گروه دوم شامل کوره های القائی[3]  با توانهای نامی چند ده مگاوات است که معمولا به صورت مستقیم و بدون فیلتر گذاری مناسب به خطوط انتقال فشار قوی متصل می شوند. این کوره ها دارای امپدانس های کاملا نامتقارن با تغییرات تصادفی هستند.

گروه سوم شامل مبدل های بزرگ الکترونیکی و قطعات الکترونیک قدرت است که اثرات قابل توجهی بر امواج سوئیچینگ سیستم های کنترل می گذارند.

1-5 هارمونیک ها و اثرات آنها بر ترانسفورماتورها 

افزایش تعداد بارهای غیر خطی در شبکه های قدرت، نظیر انواع مبدل های الکترونیکی، سیکلو کانورترها، محرکه های موتورهای الکتریکی، کوره های قوس الکتریکی، منابع تغذیه بدون وقفه، منابع تغذیه سوئیچینگ، رایانه ها، لامپ های گازی کم مصرف و غیره که توسط مشترکین صنعتی، تجاری و خانگی مورد استفاده قرار می گیرند، میزان هارمونیک های ولتاژ و جریان شبکه را به شدت افزایش داده و کیفیت توان را کاهش می دهند. عدم توجه به وجود هارمونیک ها باعث افزایش تلفات شبکه و ادوات و وسایل الکتریکی، اختلال در گشتاور موتورهای الکتریکی، اغتشاش در سیستم های الکترونیکی و مخابراتی و عملکرد نامناسب ترانسفورماتورها می شود.

1-6 مروری بر مقالات منتشرشده

تاثیر جریان های بار غیرسینوسی بر روی افزایش درجه حرارت ترانسفورماتورها برای اولین بار در مارس سال 1980 و در جلسه کمیته ترانسفورماتور انجمن مهندسین برق IEEE مورد بحث و بررسی قرار گرفت. در آن جلسه پیشنهاد شد که روشی جهت تخمین ظرفیت بارگیری ترانسفورماتور بر اساس میزان اعوجاج تدوین شود. در ماه مه سال 1980 یک کمیته مطالعاتی تشکیل شد و اولین نشست خود

را در اکتبر همان سال برگزار نمود. پس از اولین نشست، این کمیته مطالعاتی به یک گروه کاری IEEE متشکل از زیرکمیته هایی با مشخصات اجرایی ارتقاء یافت. بیست و دو نماینده از کارخانجات سازنده و مصرف کنندگان، اعضای این گروه کاری را تشکیل می دادند.

در نشست سالانه IAS  به سال 1981، مقاله ای توسط Alexander D. Kline از شرکت ترانسفورماتور Southern   ارائه و در بین اعضا کروه کاری توزیع شد [2].  این مقاله در ابتدا به ارائه روش مورد استفاده در سند C57. 110 پرداخت که در آن تلفات فوکو متناسب با مجذور جریان و مجذور مرتبه های هارمونیکی در نظر گرفته شده بود. پس از چندین پیش نویس، اولین پیش نویس  برای رای گیری از C57.110/D1 "   اقدامات پیشنهادی برای تعیین ظرفیت ترانسفورماتور تحت شرایط بار غیر سینوسی" در 29 اکتبر 1982 آماده شد. این سند پس از تکمیل در 1986 به عنوان استاندارد IEEE (C57.110) منتشر شد[3]. هدف این استاندارد، ارائه روش هایی برای تعیین ظرفیت ترانسفورماتور تحت  جریان های بار غیر سینوسی بود. روش به کار گرفته شده، اندازه جریان تجدید شده را برای افزایش مجاز مقادیر هارمونیکی مشخص می کرد. نشانه ها و علائمی که در سند 1986 مورد استفاده قرار گرفت، برای کسانی که آشنایی چندانی با طراحی ترانسفورماتور و اصطلاحات فنی آن نداشتند بسیار مبهم و پیچیده بودند. یک گروه کاری از کمیته ترانسفورماتور IEEE برای اصلاح IEEE C57.110 تشکیل شد و سند دیگری را به منظور بحث و بررسی بیشتر تهیه کرد که به رای گذاشته نشد[4]. انتشار استاندارد IEEE C57.110  راهگشای تحقیقات و پژوهش های بسیاری برای بررسی ترانسفورماتورها تحت شرایط هارمونیکی گردید و مقالات متعددی در این زمینه در سال های بعد منتشر شدند.

در سال 1990، در مقاله ای از Kennedy و Ivey، ملاحظات طراحی و کاربردی برای ترانسفورماتورهای حامل جریان های هارمونیکی بر اساس IEEE C57.110 مورد بررسی قرار گرفت [5]. مقاله دیگری در سال 1994 به ارائه روشی تخمینی برای بررسی اثرات هارمونیک های سیستم قدرت بر روی ترانسفورماتورهای توزیع پرداخت[6]. در این مقاله سه روش برای تخمین محتوای هارمونیکی بار ارائه شده است: 1) ضریب قله[4] 2) اعوجاج هارمونیکی کل 3) ضریب

روش ضریب  به دلیل در نظر گرفتن تاثیر فرکانس جریان های هارمونیکی بر تلفات فوکوی سیم پیچی های ترانسفورماتور، نسبت به دو روش دیگر ارجح تر است. استفاده از ضریب  برای تعیین ظرفیت ترانسفورماتورها در تاسیسات موجود و همچنین انتخاب ترانسفورماتور در تاسیسات جدید غالبا با مشکلاتی همراه است. برای محاسبه ضریب  در سیستم های توزیع موجود، ابتدا باید مطالعه ای برای تعیین مشخصات هارمونیکی سیستم صورت گیرد. از طرفی مطالعه دقیق هارمونیکی سیستم به دلیل متغیر بودن بار شبکه کار دشواری است. به عنوان مثال مقدار پیک بار مصرفی در طول ساعات شبانه روز و برای فصول مختلف متفاوت است. تجمع بارهای صنعتی یا خانگی و نوع بار مورد استفاده از دیگر عوامل تعیین کننده سیکل محتوای هارمونیکی بار می باشد. امروزه برای مطالعات هارمونیکی سیستم، دستگاههای مختلف تحلیل گر هارمونیک ساخته شده اند که یکی از این دستگاه ها، دستگاه چند منظوره 7330 ION ساخت شرکت Power Measurement Ltd. است که اعوجاج های هارمونیکی ورودی های جریان و ولتاژ را تا هارمونیک 15 اندازه گیری کرده و ضریب  جریان های ورودی را در فواصل زمانی مورد نظر ثبت می کند. هنگامی که مطالعه هارمونیکی سیستم کامل گردید،

طراحی ترانسفورماتور بر اساس  بدترین وضعیت هارمونیکی ثبت شده انجام می گیرد.

مطالعه یک سیستم جدید به منظور انتخاب ترانسفورماتور با ظرفیت مناسب که هنوز مورد بهره برداری قرار نگرفته است، کار بسیار پیچیده تری است. دلیل این امر مشخص نبودن نوع مصرف از قبیل تجاری، خانگی، صنعتی یا اداری و نوع تجهیزات مرتبط با آن است. پس از مشخص شدن نوع تجهیزات، قدم بعدی دستیابی به مشخصه هارمونیکی آنهاست که لازمه محاسبه ضریب  می باشد. از آنجا که ترانسفورماتورهای توزیع معمولا انواع مختلف بار را تغذیه می کنند، و شکل موج جریان به علت وجود بارهای خطی و غیر خطی مختلف، مشخصه هارمونیکی متفاوتی از مشخصه هارمونیکی هر کدام از بارها دارد، روش ضریب  ساده منجر به حصول نتایج چندان دقیقی نخواهد شد. لذا برای طراحی سیستم هایی با انواع مختلف تجهیزات که بار غیرسینوسی متفاوت از هم دارند، روش های خاصی مورد نیاز است.برای انتخاب ترانسفورماتور در چنین سیستم هایی روشی به نام روش جریان هارمونیک معادل پیشنهاد شده است. در این روش برای هر بار غیر خطی با ضریب  معین، یک جریان هارمونیکی معادل نسبت داده می شود. سپس مقادیر به دست آمده برای هر بار غیر خطی با در نظر گرفتن توان الکتریکی آن به صورت وزن دار با هم جمع شده و جریان هارمونیکی معادل کل برای چند بار غیر خطی به دست می آید که با استفاده از آن می توان ضریب نامی  برای ترانسفورماتور انتخابی را تخمین زد.

 

ممکن است هنگام انتقال از فایل ورد به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است

متن کامل را می توانید در ادامه دانلود نمائید

چون فقط تکه هایی از متن برای نمونه در این صفحه درج شده است ولی در فایل دانلودی متن کامل همراه با تمام ضمائم (پیوست ها) با فرمت ورد word که قابل ویرایش و کپی کردن می باشند موجود است


دانلود با لینک مستقیم


شرایط غیرعادی عملکرد ترانسفورماتور در حالات بار غیرسینوسی، نامتعادلی بار و نامتعادلی ولتاژ تغذیه بهمراه تحلیل و مدل سازی

دانلود پایان نامه بهینه سازی هدایت بار در شبکه های شهری و بین شهری

اختصاصی از فی دوو دانلود پایان نامه بهینه سازی هدایت بار در شبکه های شهری و بین شهری دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه بهینه سازی هدایت بار در شبکه های شهری و بین شهری


دانلود پایان نامه بهینه سازی هدایت بار در شبکه های شهری و بین شهری

در این پایان نامه به مباحث مربوط کنترل مسیر و کنترل ترافیک و بار، با استفاده از پروتکل های مسیریابی رایج در شبکه های شهری و بین شهری با طراحی، پیاده سازی و شبیه سازی نمونه ای از آنها پرداخته است. مطالب این پروژه و پیاده سازی آن بر روی مسیریاب ها با هدف تحقیق و بررسی در مورد بهینه سازی کنترل مسیر و ارائه روشهایی عملیاتی و تا حدودی هوشمند برای مدیریت مسیرها و داده های موجود در شبکه ها می باشد. این امر با ایجاد قابلیت تصمیم گیری برای مسیریاب ها محقق شده است، در این پروژه سعی شده تا تمامی اطلاعات لازم برای راه اندازی این قابلیت ها بر روی تجهیزات واقعی شبکه از ابتدایی ترین مراحل تا راه اندازی کامل تشریح شده است.

فهرست مقاله:

مقدمه

معرفی آموزش نصب و راه اندازی نرم افزار شبیه ساز GNS

بازتوزیع پایه

مبانی بازتوزیع مسیر

نیاز به توزیع مسیر

اصول و فرآیند های بازتوزیع

بازتوزیع به سمت پروتکل EIGRP

مرجع دستور بازتوزیع EIGRP

پیکربندی خط پایه برای نمونه های باز توزیع EIGRP

پیکربندی باز توزیع EIGRP با اجزای متریک پیش فرض

تائید بازتوزیع EIGRP

باز توزیع به سمت پروتکل OSPF

مرجع دستور باز توزیع OSPF

پیکربندی باز توزیع OSPF با پارامترهای حداقلی

تنظیم متریک OSPF در مسیرهای باز توزیع شده

LSA ها در OSPF و متریک برای مسیرهای خارجی نوع

تعیین جهش بعدی برای مسیرهای خارجی نوع در ناحیه میانی

تعیین جهش بعدی برای فضای میانی مسیرهای خارجی نوع

بازتوزیع به سمت OSPF به شکل مسیرهای نوع

مقایسه کوتاه مسیرنوع E ( ( ونوع E )

مسیرهای خارجی در نواحی NSSA

بازتوزیع IGP پیشرفته

بازتوزیع با نقشه های مسیر و لیست های توزیع

فیلتر کردن مسیرهای بازتوزیع شده با نقشه های مسیر

فیلتر کردن مسیر در حال پیکربندی با بازتوزیع

تایید فعالیت های فیلترسازی بازتوزیع

تنظیم متریک ها به هنگام

نقاط بازتوزیع چندگانه

مشکلات حلقه حوزه با بیش از دو حوزه مسیریابی

جلوگیری از بروز حلقه حوزه با فیلتر کردن در سطح زیر شبکه به هنگام بازتوزیع

مسیریابی مبتنی بر سیاست

اصول مسیریابی سیاست محور

اتصال و انطباق بسته و تنظیم مسیر

چگونگی تاثیر کلید واژه پیش فرض بر ترتیب منطق PBR

پیاده سازی و پیکره بندی

پیاده سازی و پیکره بندی بازتوزیع پایه و پیشرفته

پیکربندی برای باز توزیع پایه EIGRP و OSPF

پیکربندی بازتوزیع پیشرفته با نقشه های مسیر و لیست های باز توزیع

پیاده سازی PBR

بهینه سازی بارتوزیع با نقشه مسیر

جمع بندی، نتیجه گیری

مراجع

 

شامل 141 صفحه فایل pdf


دانلود با لینک مستقیم


دانلود پایان نامه بهینه سازی هدایت بار در شبکه های شهری و بین شهری