فی دوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی دوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

گزارش کامل کار دوره کارآموزی آموزش کشاورزی بخش تحقیقات خاک و آب

اختصاصی از فی دوو گزارش کامل کار دوره کارآموزی آموزش کشاورزی بخش تحقیقات خاک و آب دانلود با لینک مستقیم و پر سرعت .

گزارش کامل کار دوره کارآموزی آموزش کشاورزی بخش تحقیقات خاک و آب


گزارش  کامل کار دوره کارآموزی آموزش کشاورزی بخش تحقیقات خاک و آب

دانلودگزارش  کامل کار دوره کارآموزی آموزش کشاورزی بخش تحقیقات خاک و آب بافرمت ورد وقابل ویرایش تعدادصفحات70

گزارش کارآموزی آماده,دانلود کارآموزی,گزارش کارآموزی گزارش کارورزی


این پروژه کارآموزی بسیار دقیق وکامل طراحی شده وقابل ارائه جهت واحد درسی کارآموزی

فهرست: در دوره کارآموزی ،کارهای انجام شده را می توان به 4 گروه تقسیم کرد: 1-بازدید از طرح های تحقیقاتی و آشنایی با مراحل مختلف انجام یک طرح تحقیقاتی 2-تحقیقات کتابخانه ای در مورد مسائل مختلف 3-آشنایی با نرم افزارهای مرتبط با مهندسی خاکشناسی و آمار 4-کار در آزمایشگاه  فهرست طرح های تحقیقاتی بازدید شده: -بررسی های فیزیولوژیکی تحمل به خشکی در چغندر قند در ارتباط با P,K -بررسی اثر منابع و مقادیر پتاسیم بر خصوصیات کمی و کیفی پنبه در شرایط شور و غیر شور -اثر مصرف مواد آلی بر کمیت و کیفیت محصول چغندر قند -بررسی عملکرد گوجه فرنگی در سطوح مختلف N,Kاز طریق روش کود آبیاری  تحقیقات کتابخانه ای انجام شده: -بررسی اثرات میزان محلول پاشی عناصر کلسیم و منگنز بر روی خواص کمی و کیفی دو رقم گوجه‌فرنگی - تعیین معیارهای کیفی میوه‌های صادراتی، افزایش عملکرد و ارتقاء کیفی آنها با مصرف بهینة کود و آب در کشور - بررسی اثر مصرف فاضلاب تصفیه شده طی فرایند هوا دهی بر خصوصیات شیمیایی خاک و تجمع عناصر کمیاب سرب و کادمیوم در گیاهان آبیاری شده با فاضلاب -اثر محلول پاشی کلرور کلسیم بر روی درختان سیب - بررسی اثرات کودهای ازت وپتاسه بر عملکرد محصول گل زعفران - تعیین تناسب اراضی گندم آبی و چغندرقند در منطقه چناران، استان خراسان - تعیین‌ نیاز آبی‌ گیاه‌ چغندرقند به‌ روش‌ لایسیمتری‌ در مشهد - ضرورت مصرف گوگرد در خاک های استان خراسان -تحقیق در مورد اثر گوگرد در حاصلخیزی خاک و تغذیه گیاه -تهیه مقاله در مورد اثر گوگرد و ارسال برای چاپ در مجله زیتون - بیوفسفات طلایی، کودی جدید در تغذیه نوین درختان میوه -همکاری در انجام طرح برآورد کود مورد نیاز محصولات زراعی استان خراسان -ترجمه متون تخصصی خاکشناسی  -آشنایی با روش تحقیق  کار در آزمایشگاه: -آنالیز گیاه و خاک -نمونه برداری نمونه گیاه و نمونه خاک  آشنایی با نرم افزارهای مرتبط با مهندسی خاکشناسی و آمار -یادگیری نرم افزار Mstatc وSigmstat که در مورد بررسی آماری نتایج حاصله از طرح های تحقیقاتی می باشد. -مدل جامع کامپیوتری توصیه کودهای شیمیایی و آلی در راستای تولیدات کشاورزی پایدار  شرح طرح های تحقیقاتی بازدید شده: - بررسی های فیزیولوژیکی تحمل به خشکی در چغندر قند در ارتباط با P,K چکیده و شرح کامل طرح و هدف از اجرای آن به پیوست ضمیمه شده است. -بررسی اثر منابع و مقادیر پتاسیم بر خصوصیات کمی و کیفی پنبه در شرایط شور و غیر شور چکیده و شرح کامل طرح و هدف از اجرای آن به پیوست ضمیمه شده است. بررسی عملکرد گوجه فرنگی در سطوح مختلف N,Kاز طریق روش کود آبیاری چکیده و شرح کامل طرح و هدف از اجرای آن به پیوست ضمیمه شده است.                          اثر مصرف مواد آلی بر کمیت و کیفیت محصول چغندر قند مقدمه :      اثرات سودمند مواد آلی در بهبود خصوصیات فیزیکی، شیمیایی و بیولوژیکی خاکهای زراعی و نقش آنها در افزایش کمی و کیفی محصولات کشاورزی از دیرباز مورد توجه بشر بوده است. این مواد تا قبل از شناسایی و مصرف کودهای شیمیایی در حدود 150 سال پیش تنها منبع خارجی تأمین کننده عناصر غذایی مورد نیاز گیاه به شمار می‌آمدند. ولی با گذر از کشاورزی سنتی و ورود به کشاورزی مدرن در نیم قرن اخیر متأسفانه مصرف کودهای آلی کاهش و کودهای شیمیایی بطور روز افزونی افزایش یافت. تخریب خصوصیات فیزیکی، شیمیایی و بیولوژیکی خاک در اثر عدم مصرف کودهای آلی و کشت و کار بیش از اندازه و نیز آلودگی‌های زیست محیطی ناشی از مصرف بی‌رویه کودهای شیمیایی در کشاورزی باعث گردید که در سالهای اخیر مصرف این نوع کودها دوباره مورد توجه قرار گیرد. بطوریکه مدیریت مطلوب ماده آلی در خاک قلب کشاورزی پایدار نام گرفت. در همین راستا در کشور ما نیز در نظر است که با استفاده از مواد آلی از منابع مختلف سطح ماده آلی خاکهای زراعی حداقل به میزان یک درصد افزایش یابد.ماده آلی منبع مواد معدنی و انرژی برای گیاهان و موجودات خاک است و با تشدید فعالیت زیستی در خاک به چرخش بهتر عناصر غذایی و قابلیت جذب آنها کمک می‌کند. تحقیقات مختلف نشان داده است که در خاکهای آهکی مخلوط کردن کودهای فسفاته با کودهای آلی موجب جذب بهتر فسفر توسط گیاه می‌گردد. این پدیده می‌تواند ناشی از کاهش pH خاک در اثر CO2 حاصل از فساد مواد آلی و نیز اثر فسفر آلی باشد. معدنی شدن 1 درصد ماده آلی در 30 سانتیمتری سطح خاک می‌تواند معادل 9 تن در هکتار اسید سولفوریک، پروتون آزاد کند کمپلکس‌های آلی - فلزی که بر اثر تجزیه میکروبی ماده آلی خاک تشکیل می‌شوند نیز قابلیت جذب عناصر کم مصرف را بطور مؤثری تحت تأثیر قرار می‌دهد. ماده آلی  خاک دانه سازی و متعاقب آن نفوذ‌پذیری خاک را افزایش داده  و توسعه ریشه و راندمان مصرف آب را بهبود می‌بخشد.    سطح زیر کشت چغندرقند در کشور 185 هزار هکتار و تولید کل چغندرقند در کشور 5 میلیون تن گزارش شده است که در این میان استان خراسان با سهم 6/33 درصد از سطح زیر کشت و 9/35 درصد تولید آن در جایگاه ویژه‌ای قرار دارد مطالعات انجام شده تاکنون در استان بیشتر روی تاثیر کودهای شیمیایی خصوصاً N-P-K متمرکز بوده و  به بررسی اثرات مواد آلی پرداخته نشده است.  مواد و روشها :     به منظور بررسی تاثیر مواد آلی بر کمیت و کیفیت محصول چغندرقند پژوهشی در قالب طرح بلوکهای کامل تصادفی با 10 تیمار و در 4 تکرار در اراضی مرکز تحقیقات کشاورزی خراسان (طرق) انجام شد تیمارهای آزمایش عبارت بودند از مقادیر 5/2، 5 و 10 تن در هکتار از هر یک از کودهای گاوی، مرغی و کمپوست و شاهد (بدون مصرف هر گونه کود دامی) قبل از کاشت از هر تکرار یک نمونه مرکب خاک از عمق 30-0 سانتیمتری تهیه و در آزمایشگاه خصوصیات فیزیکی و شیمیایی آن تعیین گردید(جدول 1).  جدول1- برخی از خصوصیات فیزیکی و شیمیایی خاک محل آزمایش عمق    SP (%)    Ec Ds/m    pH    T.N.V (%)    OC (%)    N (%)    P (mg/kg)    K (mg/kg)    بافت 30-0    36    8/0    8    21    7/0    1/0    10    237    لوم     بر اساس نتایج بدست آمده از آزمون خاک، مقادیر کودهای ازته، فسفاته و پتاسیمی مورد نیاز 350 کیلوگرم اوره، 100 کیلوگرم سوپرفسفات تریپل و 100 کیلوگرم سولفات پتاسیم در هکتار برآورد شد. تمامی کود فسفره و پتاسه و   کود ازته قبل از کاشت و مابقی کود اوره در طی دوران رشد برای تمامی کرتهای آزمایشی بطور یکنواخت و به صورت سرک مصرف گردید. مواد آلی مورد استفاده (کود گاوی، کود مرغی و کمپوست) قبل از کاشت در سطح خاک پخش و بوسیله دیسک به زیر خاک برده شد. مساحت هر کرت آزمایش 60 متر مربع و میزان بذر مصرفی 20 کیلوگرم در هکتار و رقم مورد استفاده PP22 بود. پس از برداشت محصول عملکرد ریشه تعیین گردید و در آزمایشگاه، عیار، درصد قند خالص، درصد ملاس، راندمان استحصال، ناخالصی‌های سدیم و پتاسیم ، میزان ازت و ضریب قلیائیت اندازه‌گیری شد. نتایج حاصله با استفاده از نرم‌افزار SAS مورد تجزیه و تحلیل آماری قرار گرفت گروه‌بندی میانگین تیمارها با آزمون چند دامنه‌ای دانکن در سطح 5 درصد انجام شد.  نتایج و بحث :     نتایج بدست آمده از تجزیه واریانس داده های حاصل از آزمایش نشان داد که اثر تیمارهای مختلف مواد آلی بر عملکرد ریشه و صفات درصد قند خالص، درصد قند ملاس، راندمان استحصال و ناخالصی‌‌  پتاسیم و میزان ازت معنی‌دار بود ولی بر عیار، ناخالصی سدیم و ضریب قلیائیت معنی دار نبود. بیشترین عملکرد به مقدار 61 تن در هکتار مربوط به تیمار مصرف 10 تن کود مرغی بود و کمترین آن به مقدار 45 تن در هکتار در تیمار مصرف 5/2 تن کمپوست در هکتار بدست آمد. بالاترین عیار حاصل به مقدار 59/19% در تیمار مصرف 5 تن کمپوست حاصل شد. بطور کلی مصرف ماده آلی باعث بهبود کیفیت محصول چغندرقند گردید.  منابع مورد استفاده : 1-احیائی،مریم.1376. شرح روشهای تجزیه شیمیایی خاک. جلد (2) نشریه شماره 1024 مؤسسه تحقیقات خاک و آب. تهران، ایران. 2-گلچین،ا و م،ج، ملکوتی.1378.نگهداری و پویایی مواد الی در خاک. مجله علوم خاک و آب. جلد 13 شماره 1 تهران. مؤسسه تحقیقات خاک و آب. انجمن علوم خاک ایران. 3-ملکوتی،م،ج و م،ن، غیبی،1379. تعیین حد بحرانی عناصر غذایی مؤثر در خاک، گیاه و میوه. نشر آموزش کشاورزی. 4 - Allison, F.E.(1973). Soil organic matter and its role in crop production. Development in soil science 3 , Elsevier Science Publishing Co. New York. 5 - Duxbury, J.M., Smith, M.S. and Doran. J.W.1989. Soil organic matter as a source and a sink of plant nutrients. In : D.C Coleman, et al.(ed). Dynamics of Soil Organic Matter in Tropical Ecosystems, pp.33-67, University of Hawaii press. 6 - Rasmussen, P.E. and Parlon. W.J.(1994). Long-Term effects of residue management in wheat fallow: I. Inputs yield and soil organic matter. Soil Sci. Soc. Am.J.58: 523-530. 7 - Stevenson, F.J. (1994). Humus Chemistry: Genesis, Composition, Reactions, John Wiley and sons, New York.                           بررسی اثرات میزان محلول پاشی عناصر کلسیم و منگنز بر روی خواص کمی و کیفی دو رقم گوجه‌فرنگی مقدمه: گوجه ‌فرنگی  Lycopersium  esculantium )) یکی از سبزیهای مهم است که به لحاظ داشتن ویتامین  A، C و مواد غذایی نقش مهمی در سلامتی جامعه ایفای می‌نماید. گوجه‌فرنگی در شرایط اقلیمی بسیار متفاوت و در تمام استانهای کشور در سطح وسیعی کشت می‌شود. بر مبنای آمار رسمی وزارت کشاورزی در سال 1377، سطح زیر کشت گوجه‌فرنگی در کشور حدود 120 هزار هکتار و متوسط تولید 27 تن در هکتار  گزارش شده است (اداره کل آمار و اطلاعات وزارت کشاورزی، 1378). میزان برداشت عناصر غذایی گوجه‌فرنگی با 90 تن عملکرد بیش از 260 کیلوگرم ازت N) )، 100 کیلوگرم فسفر (P2O5 )، 520 کیلوگرم پتاسیم K2O))، 40 کیلوگرم منیزیم، 60 کیلوگرم گوگرد و رقمی بیش از 100 کیلوگرم در هکتار کلسیم می‌باشد. ولی مقدار برداشت عناصر ریز مغذی در مقایسه با عناصر پرمصرف بسیار کم و ناچیز است.                                                      منگنز از عناصر کم مصرف ضروری برای رشد و نمو گیاهان است که برای اولین بار کمبود آن در سال 1930 توسط اسیکنز و روپرشت در گوجه‌فرنگی گزارش شده است. منگنز در گیاه به سرعت اکسید می‌شود بنابراین در فرایند های اکسیداسیون احیا در گیاه نقش عمده‌ای  دارد (8). پژوهشگران استرالیایی نشان داده‌اند که منگنز یک جزو تشکیل دهنده کلروپلاست گوجه‌فرنگی است (1). منگنز همچنین در طویل شدن ساقه اصلی گوجه‌فرنگی نقش زیادی دارد و در صورت کمبود طول ساقه اصلی به شدت کاهش می‌یابد  (4و 8). کمبود منگنز در خاکهای حاوی کربناتهای آزاد و در pH بالا معمولاً مشاهده می‌شود (10). مارشنر و همکاران  نشان دادند که سطوح بالای فسفر موجب تشدید سمیت منگنز می‌گردد (8).  کلسیم ماده اصلی ساختمان دیواره میانی سلول است. وجود آن برای پایداری و استحکام دیواره سلولی ضروری است بنابراین هرگونه کمبود کلسیم مقاومت فیزیکی گیاه را کاهش داده و نفوذ هیف را به داخل بافت آسانتر می‌کند (1). در خاکهای آهکی علی رغم  وفور کلسیم¸ در مزارع گوجه‌فرنگی کمبود کلسیم وجود دارد. تعدادی از محققین مرگ انتهایی میوه را بدلیل کمی کلسیم و زیادی آب¸ ازت و منیزیم در خاک ذکر کرده‌اند. افزایش نسبت Ca:( K+Mg) نیز با اختلال در رسیدن میوه و ته‌رنگ سبز در میوه greenback)) همراه است. افزایش نسبت  Na: Ca نیز سبب شیوع بیشتر پژمردگی فوزاریومی Fusarium oxysporinmy)) می‌شود. محمد و همکاران با بررسی اثر تغذیه‌ای کلسیم بر عملکرد و پوسیدگی گلگاه گوجه‌فرنگی دریافت که در تیمارهای کم کلسیم میزان پوسیدگی 95% بیش از تیمار کلسیم متوسط بود. کلسیم زیاد باعث کاهش عملکرد و اندازه گوجه‌فرنگی شد (9). در این مقاله هدف این است اثرات میزان محلول‌پاشی عناصر کلسیم و منگنز بر روی خواص کمی و کیفی دو رقم گوجه‌فرنگی مورد بررسی قرار بگیرد.    مواد وروشها: به منظور بررسی اثرات میزان محلولپاشی عناصر کلسیم و منگنز بر روی خواص کمی و کیفی دو رقم گوجه‌فرنگی طرحی به صورت اسپلیت فاکتوریل در قالب بلوکهای کامل تصادفی در سه تکرار به مدت 2 سال 1381 در مرکز تحقیقات کشاورزی طرق (مشهد) انجام  شد که در آن دو رقم گوجه‌فرنگی ( مبیل وپتوارلی سی اچ) در کرت اصلی و محلول پاشی  کارور کلسیم و سولفات منگنز با سه سطح غلظت (0 ،3 ،6 در هزار ) بصورت فاکتوریل در کرتهای فرعی قرارگرفتند (محلول پاشی در زمان گلدهی انجام شد). چند هفته قبل از کاشت بذور دو رقم مورد استفاده در خاک مزرعه مورد نظر که خصوصیات فیزیکی و شیمیایی آن تعیین شده بود در خزانه کشت  شد و مراقبت‌های لازم تا زمان انتقال نشاءها به زمین اصلی انجام گرفت.  در تاریخ پانزده اردیبهشت ماه که تاریخ مناسب کشت در منطقه می‌باشد، انتقال نشاءها به زمین اصلی صورت گرفت. در هنگام انتقال نشاءها، از آنها دو بوته مرکب تصادفی تهیه و میزان عناصر ریزمغذی و منگنز و کلسیم اندازه‌گیری  شد. در طول فصل رشد مراقبت‌های لازم از قبیل وجین علفهای هرز، سمپاشی علیه آفات و بیماریها، خاکدهی پای بوته‌ها انجام شده یادداشت برداریهای لازم در تمام مدت رشد صورت  گرفت. پس از محلولپاشی و بر اساس دستورالعمل‌های موجود در هنگام میوه‌دهی  از برگهای روبرروی گوجه‌فرنگی نمونه‌برداری و غلظت عناصر فوق اندازه‌گیری  شد (3). صفاتی از قبیل آلودگی بوته‌ها به بیماری، پوسیدگی،لهیدگی میوه،بریکس و pH نیز بررسی و تعیین  شد. پس از تعیین عملکرد هر چین و کل عملکرد هر کرت آزمایشی و درجه‌بندی میوه‌ها، داده‌ها مورد تجزیه و تحلیل آماری قرار گرفته و اثرات تیمارها مشخص  شد.  نتایج و بحث: براساس نتایج  حاصله به نظر می‌رسد که ارقام مختلف گوجه فرنگی نسبت به محلول‌پاشی عناصر کلسیم و منگنز پاسخهای متفاوتی می‌دهند. اگر چه اثر سادة رقم بر عملکرد معنی‌دار نبود ولی در مورد محلول‌پاشی منگنز بیشترین عملکرد از رقم  V2 با غلظت سه در هزار سولفات منگنز و کمترین عملکرد از رقم  V1 بدون محلول‌پاشی منگنز حاصل شد. در مورد محلول‌پاشی کلرورکلسیم نیز در حالیکه V2 در سطح شش در هزار کلرور کلسیم بیشتری عملکرد را داشت رقم V1 در همین سطح کمترین محصول را تولید کرد. اثر توأم محلول‌پاشی کلسیم و منگنز نیز بر عملکرد محصول معنی دار بود. بطوریکه بیشترین عملکرد از تیمار  Mn6Ca3  و کمترین عملکرد از تیمار Mn6Ca6 حاصل شد. که این امر نشان‌دهندة ایجاد اختلال در متابولیسم منگنز در اثر کلسیم اضافی می باشد. در مجموع اثر تیمارهای منگنز، کلسیم و رقم بر عملکرد گوجه‌فرنگی در سطح 5% معنی‌دار بود و بیشترین و کمترین عملکرد (07/98 و 87/41 تن در هکتار) به ترتیب از تیمارهای V2Mn6Ca3 و V2Mn0Ca6  حاصل شد. اثر متقابل کلسیم و منگنز بر عارضة پوسیدگی گلگاه کاملآ معنی‌دار بود به طوریکه کمترین عارضه پوسیدگی در غلظت کلسیم سه در هزار و منگنز شش در هزار و بیشترین عارضه در تیمار منگنز شش در هزار و کلسیم صفر در هزار مشاهده گردید.

 


دانلود با لینک مستقیم


گزارش کامل کار دوره کارآموزی آموزش کشاورزی بخش تحقیقات خاک و آب

پایان نامه کارشناسی ارشد رشته مهندسی عمران (مکانیک خاک و مهندسی پی) تحلیل پارامتریک رفتار لرزه ای عوارض ...

اختصاصی از فی دوو پایان نامه کارشناسی ارشد رشته مهندسی عمران (مکانیک خاک و مهندسی پی) تحلیل پارامتریک رفتار لرزه ای عوارض ... دانلود با لینک مستقیم و پر سرعت .

پایان نامه کارشناسی ارشد رشته مهندسی عمران (مکانیک خاک و مهندسی پی) تحلیل پارامتریک رفتار لرزه ای عوارض ...


 پایان نامه  کارشناسی ارشد رشته مهندسی عمران (مکانیک خاک و مهندسی پی)  تحلیل پارامتریک رفتار لرزه ای عوارض ...

دانلود پایان نامه آماده

دانلود  پایان نامه  کارشناسی ارشد رشته مهندسی عمران (مکانیک خاک و مهندسی پی)  تحلیل پارامتریک رفتار لرزه ای عوارض توپوگرافی مثلثی شکل در فضای زمان با فرمت ورد و قابل ویرایش تعدادصفحات 142


- مقدمه


تجربیات بدست آمده از خرابیهای زلزله های اخیر نشان دهنده اهمیت تاثیر شرایط محلی خاک وتوپوگرافی سطحی و شرایط ساختگاه  بر شدت و وسعت خرابی ساختمانها و توزیع مکانی آنها حین زلزله می باشد. بررسی تاثیر شرایط ساختگاه در برابر امواج لرزه ای، از جمله مباحث مهم در زمینه دانش مهندسی زلزله می باشد. فلسفه اهمیت این موضوع، الگوهای رفتاری پیچیده عوارض توپوگرافی بوده که منجر به ایجاد تفاوتهای قابل ملاحظه ای بین امواج گسیل شده از چشمه و امواج رسیده به سطح زمین می شود. شرایط ساختگاه و توپوگرافی می تواند بر تمام پارامترهای مهم یک جنبش نیرومند زمین از قبیل دامنه، محتوای فرکانس، مدت و غیره اثر گذار باشد. اثرات محلی ساختگاه نقش مهمی در” طراحی مقاوم در برابر زلزله” ایفا نموده و بایستی بصورت مجزا با آن برخورد گردد.. مهندسان بطور سنتی، چنین اثراتی را با استفاده از مدلهای ساده مبتنی بر توصیف 1D از پروفیل محلی خاک و انتشار امواج لرزه‌ای و با موفقیت ارزیابی نموده‌اند لذا ساختگاهایی برای این نوع مدلسازی مناسب خواهند بود که از گستردگی نسبتأ وسیعی در پهنای منطقه مورد مطالعه نسبت به ضخامت لایه رسوبی برخوردار باشند. لیکن حوادث اخیر نظیر زلزله هیوگوکن نانبو ژاپن با کمربند باریک خسارت تشدید یافته خود که شهر کوبه را قطع می‌نمود و سبب مرگ 6000 تن گردید، پیچیدگی قابل ملاحظه در الگوهای تقویت لرزه‌ای حاصل از اثرات ساختگاهی 2D و 3D آشکار ساخت. دقیق نبودن و تخمین دست پایین شدت زلزله های مخرب حاصل از آنالیزهای یک بعدی می تواند در تخمین خسارات وارده بحرانی و خطرساز باشد چرا که اثرات ساختگاهی 2D و 3D در دره‌های رسوبی پر شده و یا بر روی توپوگرافی‌هایی که شهرها آنجا واقع شده‌اند بیشتر بوقوع می‌پیوندد.
 در یک طبقه‌بندی کلی می‌توان ناهمواریهای موجود در یک ساختگاه را به "ناهمواریهای زیرسطحی" و "ناهمواریهای سطحی" طبقه‌بندی نمود. هر دو نوع ناهمواریها منجر به افزایش دامنه و نیز تداوم حرکات بر روی سطح زمین در اثر عبور امواج زلزله می‌گردند، لیکن از نقطه‌نظر مهندسی تفاوت قابل ملاحظه‌ای بین عوارض سطحی و ناهمواریهای زیرسطحی وجود دارد و از سوی دیگر حتی درون یک دسته مشخص نظیر ناهمواریهای زیرسطحی نیز الگوی تقویت بشدت به وضعیت زمین‌شناسی سطحی وابسته است.
فعالیتهای قابل توجهی از سوی محققین در جهت رسیدن به درکی جامع از رفتار ناهمواریهای سطحی در برابر امواج لرزه ای زمین صورت گرفته است ولی در این زمینه نتیجه ای قطعی و کاربردی به گونه ای که قابل استفاده در آیین نامه های مهندسی باشد ارائه نشده است.
هدف اصلی از انجام این تحقیق برطرف نمودن این کمبود و حداقل در حوزه نتایج حاصل از مدلهای عددی می‌باشد آنچه که در این تحقیق بطور مشخص مورد بررسی قرار خواهد گرفت ارزیابی رفتار لرزه‌ای عوارض روسطحی (توپوگرافی) تحت اثر بارهای لرزه‌ای از طریق انجام مطالعات پارامتریک بر روی گستره وسیعی از اشکال هندسی رایج، مرسوم و قابل تطابق با طبیعت و با فرض رفتار خطی می‌باشد. از میان پارامترهای موثر بر رفتار لرزه‌ای عوارض توپوگرافی یعنی مشخصات هندسی، ژئومکانیکی و حرکت ورودی، بیشتر تمرکز در این تحقیق بر مشخصات هندسی خواهد بود. پارامترهای هندسی را به اشکال مختلفی می‌توان در مطالعات پارامتریک مورد توجه قرار داد لیکن رویه رایج و عرف متداول آن است که با معرفی پارامترهای بی‌بعد (نظیر ضرایب شکل یا فرکانس بی‌بعد یا زمان بی‌بعد) و در واقع تلفیق تعدادی از پارامترها با هم، هم تعداد تحلیلهای لازم را کاهش داد و هم وابستگی نتایج حاصله به هندسه تحت تحلیل را برطرف نمود لذا رویکرد اصلی در این زمینه در این تحقیق هم انجام تحلیلهای مربوطه بر روی یک هندسه پایه از مسئله تحت بررسی و سپس ارائه نتایج بصورت بی‌بعد برحسب ضریب شکل و فرکانس بی‌بعد (یا زمان بی‌بعد) خواهد بود. همچنین فرضیات حرکت ورودی در قالب موج درون صفحه‌ایP وSV بصورت قائم در نظر گرفته خواهد شد. در این تحقیق، از مطالعات پارامتریک بر روی تاثیر ضریب پواسون مصالح بر طبق مطالعات انجام شده توسط استاد راهنما و استاد مشاور این تحقیق(دکتر رزمخواه و دکتر کمالیان)، به علت کم بودن تاثیر ضریب پواسون مصالح در نتایج بدست آمده، صرفنظر شده است. مدل سازی هندسی مسئله نیز بصورت نیم فضا و بدون لایه بندی انجام شده و حرکت ورودی بصورت موجک ریکراعمال می شود، نهایتاً با استفاده از نمودارهای بی‌بعد حاصله، سعی خواهد گردید سازوکاری برای ملحوظ نمودن اثرات 2D با استفاده از نتایج تحلیلها بدست آید.
این تحقیق در پنج فصل و با تشریح مطالبی شامل مروری بر سابقه تحقیقات ومطالعات انجام شده در زمینه بررسی تاثیرات عوارض توپوگرافی بر رفتار لرزه‌ای سطح زمین، کلیاتی در مورد برنامه مورد استفاده و ارزیابی اعتبار آن و پدیده انتشار امواج در محیطهای دو بعدی و راه حل عددی آن، تحلیلهای پارامتریک عوارض توپوگرافی با اشکال مثلثی و نتایج حاصله، و نهایتاً جمع‌بندی مطالب و پیشنهاد مطالعات تکمیلی ارائه شده است.
در فصل اول (فصل حاضر)، مقدمات، ضرورت انجام تحقیق و مراحل مختلف پایان‌نامه شرح داده می‌شود. در فصل دوم که به سابقه تحقیقات و مطالعات انجام شده اختصاص دارد، ابتدا مطالعات و شواهد تجربی، سپس مطالعات نظری و تحلیلهای عددی و متعاقب آن مطالعات ریز پهنه‌بندی لرزه‌ای 2D ارائه گردیده است.
فصل سوم ، با مروری بر پدیده انتشار امواج لرزه‌ای ومعادلات حاکم بر آن آغاز می‌گردد و روشهای حل عددی این معادله تشریح شده و آنگاه روش عددی مورد استفاده در این تحقیق معرفی می‌گردد. در بخش بعدی این فصل برخی تفاسیر فیزیکی از مسائل دو بعدی انتشار امواج که در فصول بعدی برای تفسیر و نتیجه‌گیری مورد استفاده قرار گرفته‌اند تشریح می‌شوند. همچنین در این فصل به معرفی نرم‌افزار Hybrid ، بعنوان برنامه مرجع مورد استفاده در این تحقیق پرداخته شده و نمونه‌هایی از تائید اعتبار و دقت این برنامه در مسایل مشابه ارائه گردیده است.
فصل چهارم ، شامل تحلیلهای پارامتریک تپه ها و دره های مثلثی شکل بوده، نتایج بدست آمده و تفاسیر مربوطه،  با تمرکز بر ضریب شکل می‌باشد.
فصل پنجم، جمع‌بندی و ارائه نتایج کلی تحلیلهای پارامتریک و کاربرد آنها را در بر می‌گیرد و در انتها پیشنهاداتی در زمینه ادامه این تحقیق ارائه گردیده است.

                                                             فهرست مطالب    
                                                                                                   عنوان                                                                                                                    صفحه    

1 - مقدمه.................................................................................................................................................... 1
2- تاریخچه تحقیقات و مطالعات انجام شده................................................................................................ 4
2-1-شواهد تجربی ومطالعات درخصوص اثرات ساختگاه تیز گوشه و مثلثی شکل بر پاسخ  زمین.........4
2-2- مطالعات نظری و تحلیلهای عددی عارضه مثلثی شکل............................................. .................19
2-3- مطالعات انجام شده در رابطه با تحلیلهای پارامتریک عوارض تیزگوشه و مثلثی شکل................ 26
3-  پدیده انتشار امواج دو بعدی و حل عددی معادلات آن .   ...........................................................37
     3-1- مقدمه ................................................................................................................................37
     3-2- انواع مختلف ناهمواریها ....................................................................................................38
     3-3- علل تقویت امواج لرزه ای ........................................................................................ .......04
         3-3-1- اثر سطحی( Surface Effect) ................................................................... ........04
         3-3-2- اثر کانونی شدن (Focusing Effect ) ...............................................................42
         3- 3 -3- اثر گهواره ای (Rocking Effect ) ............................................................ .....44
         3-3-4 - اثر عبور پراکنش موج (Scattering & Passage effect).................... ........54
      3-4- معادلات انتشار امواج الاستیک .........................................................................................45
      3-5- حل عددی معادله انتشار امواج ............................................................................ ............49
      3-6- روش عددی مورد استفاده و دامنه مطالعات پارامتریک ....................................................54
     3-7- تعیین ابعاد المان در روش اجزای مرزی .......................................................  ...................56
     3-8-  معرفی نرم افزار Hybrid .............................................................................................59
      3-8-1- مقدمه ............................................................................................................ ...........59
      3-8-2- بررسی اعتبار و دقت نرم افزار Hybrid ....................................................................61
       3-8- 2-1-  حرکت میدان آزاد نیم فضا ..................................................................................61
       3-8-2-2- دره خالی با مقطع نیم دایره ....................................................................................62
       3-8-2-3- دره آبرفتی با مقطع نیم دایره ..................................................................................62
       3-8-2-4-  تپه با مقطع نیم سینوسی .........................................................................................62
       3-8-2-5- تپه با مقطع نیم دایره ...............................................................................................63
4-ااف-رفتار لرزه ائی تپه های مثلثی شکل......................................... ..............................................64
4-1- مقدمه ............................................................................................................................64    
4-2- متدلوژی مطالعات ........................................................................................... ..............65
4-3- اعتبار سنجی مدل..................................................... ......................................................67
4-3-1-  ابعاد مش بندی......................................................... ............ ................................68
4-3-2- طول گام زمانی............ ......................................................... ............ ............... ...68
        4 -4- تاریخچه زمانی دامنه مولفه‌های افقی و قائم تغییر مکان برای کل محدوده..... ...... ...  ....69
4-5- تفرق امواج در حوزه زمان ( تفسیر نمودار های تاریخچه زمانی )        ......................... .    69
4-6- بزرگنمایی تپه در فضای فرکانسی ......................................................... ............ .............71
4-6-1 تفسیر کلی نمودارهای بزرگنمایی .................................................... ............  ..........71                             
4-6-2 بزرگنمایی راس تپه...................  .................................................... ............  ..........72                                                      4-7-تغییرات بزرگنمائی بر روی یال تپه .................................................... ........... .. . ............73
        4-8-ضریب تقویت عوارض تپه ای مثلثی شکل.................................................... ..................75   
4-ب-رفتار لرزه ائی دره های مثلثی شکل......................................... ............................  ................104
4-9- متدلوژی مطالعات ...................................................... ..................................................104
4-10- اعتبار سنجی مدل.....................................................  ...................................... ..........105
4-10-1-  ابعاد مش بندی................................................................................................105
4-10-2- طول گام زمانی............ ......................................................... ....................... .106
        4 -11- تاریخچه زمانی دامنه مولفه‌های افقی و قائم تغییر مکان برای کل محدوده.......... . ...106
4-12 تفرق امواج در حوزه زمان ( تفسیر نمودار های تاریخچه زمانی )    .........................    106
4-13- بزرگنمایی دره در فضای فرکانسی ..........................................................................108
4-13-1 تفسیر کلی نمودارهای بزرگنمایی........  ........................................    .............108                                 
4-13-2 بزرگنمایی قعردره..........................................................................................110                                                            4-14-تغییرات بزرگنمائی بر روی یال دره .............................................. ..........   .  .........111   
        4-15-ضریب تضعیف عوارض دره ای مثلثی شکل...............  ..........................................112      
5  - جمع‌بندی و نتیجه‌گیری   ..... ...............................................    ................................... .. 141
           5-1-   نتایج مطالعه پاسخ تپه ها در حوزه زمان                                  141  
           5-2-  نتایج مطالعه پاسخ تپه ها در حوزه فرکانس                               141
5-3- نتایج مطالعه پاسخ دره ها در حوزه زمان                                                            141                         
5-4- نتایج مطالعه پاسخ دره ها در حوزه فرکانس                                                       142                          
5-5-زمینه های پیشنهادی برای ادامه این تحقیق                                                          142                           
مراجع ..............................................................................................................................143










فهرست اشکال
  عنوان                                                                      صفحه
شکل (2-1)-  کوه کاگل، توپوگرافی، زمین‌شناسی و محل ایستگاه‌ها .............................................. 5
شکل (2-2)-  کوه ژوزفین پیک، توپوگرافی، زمین‌شناسی در محل ایستگاه‌ها ......................................6
شکل (2-3)- کوه باتلر، توپوگرافی، زمین‌شناسی و محل ایستگاه‌ها ..................................................... 6
شکل (2-4)- کوه پاول و ایستگاههای انتخاب شده      ...................................................................... 8
شکل (2-5)- کوه بیز و ایستگاه‌های انتخاب شده ......................... ................................................ ..... 8
شکل(2-6)-. کوه گپ و ایستگاه‌های انتخاب شده.................................................. .......... ...... ...........8
شکل(2-7)- کوه پاول، ضریب بزرگنمایی حرکت افقی زمین، به روش بور.......................................... 9
شکل (2-8)- کوه بیز، ضریب بزرگنمایی حرکت افقی زمین، به روش بور............................................ 9
شکل (2-9)- کوه گپ، ضریب بزرگنمایی حرکت افقی زمین، به روش بور........................................10
شکل (2-10)- ضریب بزرگنمایی سطح زمین براساس فاصله از قله برای کوههای پاول ، بیز و گپ......11
شکل (2-11)- شتابهای ماکزیمم نرمال  شده در کوه Matsuzaki ژاپن........................ ................ 12
شکل (2-12)- هندسه کوه Sourpi و ایستگاههای اندازه‌گیری  ............................ .........................14
شکل (2-13)- مقایسه نسبتهای طیفی نظری (خطوط توپر) و نسبتهای طیفی مشاهده شده بعلاوه و منهای
 انحراف معیار(ناحیه سایه زده شده)...................... .................................... ........................ ..............14
شکل(2-14)- هندسه کوه  Mt. St. Eynard و ایستگاههای اندازه‌گیری  ................................. 15
شکل(2-15)- نسبتهای طیفی نظری  S2/S3 (خط‌چین‌ها) نسبتهای طیفی مشاهده شده (خطوط توپر) و
 انحراف معیار نسبتهای طیفی مشاهده شده (نواحی سایه خورده) (a ) گروه T ، مولفه Z ،) (b گروه
T ، مولفه(c) , E-W گروه R، مولفه (d) , Z گروه R ، مولفهE-W  ........................................16
شکل (2-16)- بالا) مولفه‌های E-W ثبت شده توسط ایستگاههای مستقر در Castillon ، پایین)
 مقطع عرضی سایت Castillon . ................................................. ............. ............... ............... 17
شکل (2-17)- بالا) مولفه‌های E-W ثبت شده توسط ایستگاههای مستقر در Piene ، پائین)
مقطع عرضی سایت Piene................ ................................................. ............. ..........................17
شکل (2-18)- نتایج تحلیلهای طیفی برای مولفه E-W سایت Castillon .................................18
شکل (2-19)-   نتایج تحلیلهای طیفی برای مولفه E-W سایتPiene  .......................................18
شکل (2-20)- حساسیت حرکت سطحی به زاویه برخورد برای امواج SV صفحه‌ای مایل الف)
شکل چپ- وابستگی حرکت سطحی به زاویه برخورد برای امواج SV مهاجم
 (برای ضریب پواسون برابر25/0)و ب)شکل راست– تغییرات زاویه انعکاس و دامنه امواج
 منعکس شده موضعی سطحی برای امواج SV مهاجم قائم ................................. ........................23

شکل (2-21)-. پاسخ یک دسته مشخص از گوه‌ها به امواج SH................................................. 24
شکل (2-22)- دامنه‌های سطحی همپایه شده برحسب تابعی از مختصات بی‌بعد در راستای محور xها
 در امتداد رویه خارجی یک گوه با زاویه داخلی 120 درجه در سه زاویه برخوردمختلف... ......... 26
شکل (2-23)- دامنه‌های تغییرمکان در سطح آزاد برای پشته‌های با ضرایب شکل مختلف تحت
 برخورد امواج SH قائم و فرکانس بی‌بعد برابر50/0   ... ......... ... ......... .. ......... ... .........  26
شکل (2-24)- )- برخورد یک موج SV  درون صفحه‌ای با زاویه برخورد °30 به یک پشته مثلثی
شکل با SR=1.0........................................ ......................................................... ..................33
شکل (2-25)- برخورد یک موج رایلی به یک پشته مثلثی شکل باSR=1.0............................ 33
شکل (2-26)-  برخورد یک موج P  درون صفحه‌ای با زاویه برخورد °30 به یک دره مثلثی
 شکل با  SR= ........................................ ......................................................... ................34
شکل (2-27)- برخورد یک موج SV  درون صفحه‌ای با زاویه برخورد °30 به یک دره مثلثی
 شکل با  SR=........................................ ......................................................... ................34
شکل (2-28)- برخورد یک موج SV  درون صفحه‌ای با زاویه برخورد °45 به یک دره مثلثی
 شکل با SR=0.577.................................... ......................................................... ................34
شکل (2-29)-  برخورد موج P,SH,SV  درون صفحه‌ای با زاویه برخورد قائم به یک دره مثلثی
شکل با SR=0.62..................................................... ......................................... ...................35
شکل (2-30)-  برخورد یک موج SV  درون صفحه‌ای با زاویه برخورد °30 به یک دره نیم بیضی
شکل با.03SR=..................................................... ................... .......................... .................36
شکل (2-31)- برخورد یک موج SV  درون صفحه‌ای با زاویه برخورد °45 به یک دره نیم بیضی
 شکل با.03SR=  ....................................................................................................................36
شکل(2-32)- برخورد موج SH  درون صفحه‌ای با زاویه برخورد قائم به یک دره مثلثی شکل..36
شکل (2-33)- برخورد موجSH  درون صفحه‌ای با زاویه برخورد قائم و ° 35 به یک تپه..........36
شکل (2-34)- برخورد موج SH درون صفحه‌ای با زاویه برخورد قائم به یک
 تپه ذوزنقه ائی شکل.................................................................................................................36                                                                                                               
 شکل (3-1)- نمونه‌هایی از ناهمواریهای سطحی.....................  ...................................................39
شکل (3-2)-  نمونه‌هایی از ناهمواریهای زیرسطحی ....................................................................40
شکل(3- 3)- تغییرات بزرگنمایی ناشی از اثر سطحی در زوایای برخورد مختلف امواج
 P ، SV وSH. .............................................................................................. ......................... .42                                                                                                                   
شکل(3-4)-a) ،b) ،c) - اثر کانونی شدن موجهای انعکاسی.......................................................44
شکل (3-5)- مدل اثر گهواره ای..................................................................................................44
شکل (3-6)- اثر عبور موج و پراکنش موج در تقویت و تغییر سرشت کلی یک نگاشت ثبت شده
 بر روی توپوگرافی.......................................................................................................................45        
شکل (3-7)- تصاویر آنی میدان تغییر مکان ناشی از انتشار امواج رایلی از سمت چپ به راست
 (Fuyuki & Motsumoto, 1980)...................................................................................51
شکل (3-8)- الف- تاریخچه زمانی موجک ریکر.......................................................................56
شکل(3-8)- ب- طیف دامنه فوریه موجک ریکر.......................................................................56
شکل (3-9)-  نمای شماتیک نواحی اجزاء محدود و اجزای مرزی ..........   ...............................61
                                                   اشکال تپه های مثلثی شکل  
شکل (4-1)- هندسه تپه مثلثی شکل......................................................................................... 76
شکل(4-2)- تاریخچه زمانی موجک ریکر...............................................................................76         
شکل4-3-)همگرائی تاریخچه زمانی تغییر مکان در نقاط مختلف تپه مثلثی شکل به ازای x/bهای
 0.0,0.5,1.0,2.0 به ازای مدلهای مختلف اجزای مرزی (BEM)جهت موج SV... ...............77
شکل (4-4)- همگرائی تاریخچه زمانی تغییر مکان در نقاط مختلف تپه مثلثی شکل به ازای
 x/bهای 0.0,0.5,1.0,2.0 به ازای مدلهای مختلف اجزای مرزی (BEM)جهت موج P........78
شکل )4-5(-همگرائی تاریخچه زمانی تغییر مکان در نقاط مختلف تپه مثلثی شکل به ازای
 x/bهای 0.0,0.5,1.0,2.0 به ازای چهار گام زمانی مختلف جهت موج SV........   ...............79
شکل) 4-6(-همگرائی تاریخچه زمانی تغییر مکان در نقاط مختلف تپه مثلثی شکل به ازای
 x/bهای 0.0,0.5,1.0,2.0 به ازای چهار گام زمانی مختلف جهت موجP...................  ..........80
شکل(4-7)- نمودارهای تاریخچه زمانی تغییر مکان افقی وقائم برای کل تپه مثلثی شکل  
 به ازائ موج SVبا ضریب شکلهای 2.0,1.0,0.1..... .................................. ................ .......... 81
شکل(4-8)- نمودارهای تاریخچه زمانی تغییر مکان افقی وقائم برای کل تپه مثلثی شکل  
 به ازائ موج  Pبا ضریب شکلهای 2.0,1.0,0.1..... ..................................  ..................  ........ 28
شکل(4-9)- نمودارهای تاریخچه زمانی تغییر مکان افقی وقائم محدوده ا ئی به طول
 5برابر نیم پهنای عارضه   در طرفین به ازائ موج SVو ضریب شکلهای 2.0,1.0,0.1......  .......83
شکل(4-10)- نمودارهای تاریخچه زمانی تغییر مکان افقی وقائم محدوده ا ئی به طول
 5برابر نیم پهنای عارضه در طرفین به ازائ موج Pو ضریب شکلهای 2.0,1.0,0.1..........   ........84
شکل(4-11)- نمودارهای بزرگنمائی افقی وقائم امواج مهاجم sv درمحدوده ا ئی به طول
5برابر نیم پهنای عارضه در طرفین به ازائ ضریب شکلهای 2.0,1.0,0.1.................................. 85
   شکل( 4-21)نمودارهای بزرگنمائی افقی وقائم امواج مهاجم p درمحدوده ا ئی به طول   
5 برابر نیم پهنای عارضه در طرفین به ازائ ضریب شکلهای 2.0,1.0,0.1........................... 86
شکل(4-13)تغییرات پریود مشخصه در مرکز عارضه باضریب پواسون ثابت و ضرایب شکل
 مختلف  برای عوارض روسطحی تیزگوشه مثلثی شکل و برخورد موج SV....................... 87  
 شکل(4-14)تغییرات پریود مشخصه در مرکز عارضه باضریب پواسون ثابت و ضرایب شکل
 88..........  .................p مختلف برای عوارض روسطحی تیزگوشه مثلثی شکل و برخورد موج

شکل(4-15) تغییرات بزرگنمائی برحسب نسبت شکل به ازائ موج SVوV=0.33مر.بوط
 به مولفه موافق............................................................ ..........................................................89
شکل(4-16)- تغییرات بزرگنمائی برحسب نسبت شکل به ازائ موج SVو0.33 = V  مربوط
 به مولفه مخالف ............................................................ ....................................... ..............90
شکل (4-17)- تغییرات بزرگنمائی برحسب نسبت شکل به ازائ موج Pو0.33V= مربوط
 به مولفه موافق ............................................................ ....................................... .......... .....91
شکل(4-18) تغییرات بزرگنمائی برحسب نسبت شکل به ازائ موج Pو0.33=V. مربوط
 به مولفه مخالف  ............................................................ .......................................  ............92
شکل(4-19) تغییرات بزرگنمائی برحسب بازه پریودیک به ازائ موج SVو0.33=V
  اشکال مربوط به مولفه موافق میباشد........................................................  ...........................93.
شکل(4-20)- تغییرات بزرگنمائی برحسب بازه پریودیک به ازائ موج SVو0.33=V
 اشکال مربوط به مولفه مخالف میباشد...................................................................................4 9
شکل(4-21)- تغییرات بزرگنمائی برحسب بازه پریودیک به ازائ موج PوV=0.33
 اشکال  مربوط به مولفه موافق میباشد..........................................................   ........................95
شکل(4-22)- تغییرات بزرگنمائی برحسب بازه پریودیک به ازائ موج Pو0.33= V
اشکال  مربوط به مولفه مخالف میباشد.......... ..........................................................................96
شکل(4-23)- تاثیر محدوده های پریودیک بر ضریب تقویت متوسط در تپه های مثلثی شکل
 با ضریب شکل مختلف دراثر بر خوردموج svنمودارهای نمودارهای سمت چپ مربوط به
 مولفه موافق وسمت راست مربوط به  مولفه مخالف میباشد...... ................. ....................... 97                        

شکل(4-24)- تاثیر محدوده های پریودیک بر ضریب تقویت متوسط در تپه های مثلثی شکل
 با ضریب شکل مختلف دراثر بر خوردموج pنمودارهای نمودارهای سمت چپ مربوط به
 مولفه موافق وسمت راست مربوط به  مولفه مخالف میباشد.....................................................98
شکل(4-25)- نمودارهای تاثیر ضریب شکل درمحدوده پریودیک مختلف بر ضریب تقویت
 متوسط برای برخورد موج SVدر تپه های مثلث شکل مربوط به مولفه موافق................. ........99
شکل(4-26)- نمودارهای تاثیر ضریب شکل درمحدوده پریودیک مختلف بر ضریب تقویت
 متوسط برای برخورد موج SVدر تپه های مثلث شکل مربوط به  مولفه مخالف....................100
شکل(4-27)- نمودارهای تاثیر ضریب شکل درمحدوده پریودیک مختلف بر ضریب تقویت
 متوسط برای برخورد موج pدر تپه های مثلثی شکل مربط به مولفه موافق.. ...........................101
شکل(4-28)- نمودارهای تاثیر ضریب شکل درمحدوده پریودیک مختلف بر ضریب تقویت
 متوسط برای برخورد موج pدر تپه های مثلثی شکل  مربوطبه مولفه مخالف...........   ............102
شکل(4-29)- ضریب تقویت نسبی 2D/1D برای عوارض تپه ای مثلثی شکل برای مولفه
 موافق و مخالف در اثر برخورد موجSV............................... ..............................................103
شکل(4-30)- ضریب تقویت نسبی 2D/1D برای عوارض تپه ای مثلثی شکل برای مولفه
 موافق و مخالف در اثر برخورد موج P..............................................................   ...............103
                                               اشکال دره های مثلثی شکل  
شکل (4-31)- هندسه دره مثلثی شکل......................................................................    .......... 113
شکل(4-32)- تاریخچه زمانی و طیف فوریه موجک ریکر............................ .........    ............113         
شکل4-33)همگرائی تاریخچه زمانی تغییر مکان در نقاط مختلف دره مثلثی شکل به ازای
x/bهای 0.0,0.5,1.0,2.0 به ازای مدلهای مختلف اجزای مرزی (BEM)جهت موج SV. ....114
شکل (4-34)- همگرائی تاریخچه زمانی تغییر مکان در نقاط مختلف دره مثلثی شکل به ازای
 x/bهای 0.0,0.5,1.0,2.0 به ازای مدلهای مختلف اجزای مرزی (BEM)جهت موج P..  . ..115
شکل )4-35(-همگرائی تاریخچه زمانی تغییر مکان در نقاط مختلف دره مثلثی شکل به ازای
 x/bهای 0.0,0.5,1.0,2.0 به ازای چهار گام زمانی مختلف جهت موج SV........    ..............116
شکل) 4-36(-همگرائی تاریخچه زمانی تغییر مکان در نقاط مختلف دره مثلثی شکل به ازای
 x/bهای 0.0,0.5,1.0,2.0 به ازای چهار گام زمانی مختلف جهت موجP..............................117
شکل(4-37)- نمودارهای تاریخچه زمانی تغییر مکان افقی وقائم برای کل دره مثلثی شکل  
 به ازائ موج SVبا ضریب شکلهای 2.0,1.0,0.1..... .................................. .......................... 118
شکل(4-38)- نمودارهای تاریخچه زمانی تغییر مکان افقی وقائم برای کل دره مثلثی شکل  
 به ازائ موج  Pبا ضریب شکلهای 2.0,1.0,0.1..... ..................................  .......................... 119
شکل(4-39)- نمودارهای تاریخچه زمانی تغییر مکان افقی وقائم محدوده ا ئی به طول
 5برابر نیم پهنای عارضه  در طرفین به ازائ موج SVو ضریب شکلهای 2.0,1.0,0.1.....   .......120
شکل(4-40)- نمودارهای تاریخچه زمانی تغییر مکان افقی وقائم محدوده ا ئی به طول
 5برابر نیم پهنای عارضه در طرفین به ازائ موج Pو ضریب شکلهای 2.0,1.0,0.1............ ......121
شکل(4-41)- نمودارهای بزرگنمائی افقی وقائم امواج مهاجم sv درمحدوده ا ئی به طول
5برابر نیم پهنای عارضه در طرفین به ازائ ضریب شکلهای 2.0,1.0,0.1................................. 122
   شکل( 4-24)نمودارهای بزرگنمائی افقی وقائم امواج مهاجم p درمحدوده ا ئی به طول   
5 برابر نیم پهنای عارضه در طرفین به ازائ ضریب شکلهای 2.0,1.0,0.1................   ..... ...... 123
شکل(4-43)تغییرات پریود مشخصه در مرکز عارضه باضریب پواسون ثابت و ضرایب شکل
 مختلف  برای عوارض روسطحی تیزگوشه مثلثی شکل

دانلود با لینک مستقیم


پایان نامه کارشناسی ارشد رشته مهندسی عمران (مکانیک خاک و مهندسی پی) تحلیل پارامتریک رفتار لرزه ای عوارض ...

سمینار ارشد رشته معدن بررسی خاک شور سمیرم اصفهان و کاربردهای آن

اختصاصی از فی دوو سمینار ارشد رشته معدن بررسی خاک شور سمیرم اصفهان و کاربردهای آن دانلود با لینک مستقیم و پر سرعت .

سمینار ارشد رشته معدن بررسی خاک شور سمیرم اصفهان و کاربردهای آن


سمینار ارشد رشته معدن بررسی خاک شور سمیرم اصفهان و کاربردهای آن

دانلود سمینار ارشد رشته معدن بررسی خاک شور سمیرم اصفهان و کاربردهای آن با فرمت ورد و قابل ویرایش تعداد صفحات 77

دانلود سمینار آماده

 

چکیده:

ایران با داشتن پیشینة تاریخی و آثار تمدن بشری به لحاظ موقعیت جغرافیایی و زمین شناسی یکی از نادرترین کشورهای جهان می باشد. ذخائر ارزشمند و گوناگون مواد معدن از جمله مواهب الهی است که به این سرزمین ارزانی گردیده است.گذر ایران از دوران مختلف زمین شناسی با کوه زایی ها، آتشفشان ها، پیشروی و پس روی دریاها حکایت از وخور انواع متفاوت مواد معدنی در جای جای این خاک پرگهر دارد.همزمان با گسترش روز افزون صنایع، در نتیجه نیاز صنعت به مواد خام لزوم توسعه فعالیتهای زمین شناسی و اکتشافات معدنی و تجهیز و بهره برداری از معادن بیش از پیش احساس می گردد. توسعة صنعت نسوز در گرو اهتمام ویژه به شناسایی مواد معدنی و توسعه معدنکاری است.آنچه در مجموعة زیر آمده است مختصری در مورد خاک های نسوز علل الخصوص خاک نسوز سمیرم اصفهان و کاربردهای صنعتی آنها می باشد.

در پایان نیز منابع و مآخذ استفاده شده ذکر گردیده است.

 

مقدمه:

تاریخ توسعه مواد و فرآورده های نسوز اجبارا به تاریخ بسوا و توسعه صنایع ذوب و سرامیک ارتباط پیدا می کند از زمان های قدیم، اطلاعات کمی در دست است ولی از تاریخ ذوب فلزات و آثار آن، می توان گفت که از ده هزار سال پیش مواد نسوز مورد استفاده بودند و در سه قرن اخیر، بسط و توسعه بسیار یافته اند.به خصوص در قرن حاضر که تکنیک های پیشرفته و مواد اولیه پیش ساخته به کار گرفته می شود مصری ها در پنج هزار سال پیش از مواد نسوز استفاده می کردند. در 2500 سال پیش برای ساختن قصر داریوش در ایران از آجرهای پخته شدة سیلیس استفاده شده است تاریخ تولید انواع فرآورده های نسوز در جدول زیر آمده است. تاریخ توسعه مواد و فرآورده های نسوز اجبارا به تاریخ بسوا و توسعه صنایع ذوب و سرامیک ارتباط پیدا می کند از زمان های قدیم، اطلاعات کمی در دست است ولی از تاریخ ذوب فلزات و آثار آن، می توان گفت که از ده هزار سال پیش مواد نسوز مورد استفاده بودند و در سه قرن اخیر، بسط و توسعه بسیار یافته اند.

 

فهرست مطالب
عنوان:                                     صفحه
چکیده
مقدمه
فصل اول: مواد نسوز
1-1    تعریف مواد نسوز
1-2     نقش مواد نسوز
1-3     خواص مواد نسوز
1-4     انواع مواد نسوز
1-5    تقسیم بندی فرآورده های نسوز
فصل دوم: انواع رس ها و ویژگی های آنها
2-1- تقسیم بندی کانی های رس
2-2- روش شناخت
2-3- انواع رس ها و کاربردهای آنها
2-3-1- کائولن
2-3-2- بال کلی
2-3-3- رس های نسوز
2-3-4- بنتونیت
2-3-5- فولر زارث
2-4- خاک نسوز
2-5- وضعیت تولید محصولات رسی در دنیا
2-6- وضعیت صنعت نسوز در ایران
2-7- تولید – میزان صادرات و واردات خاک نسوز در ایران
فصل سوم: معدن سمیرم اصفهان
3-1- تاریخچه اکتشاف معدن
3-2- خلاصه وضعیت زمین شناسی
3-3- مشخصات ماکروسکوپی خاک نسوز سمیرم
3-4- بررسی کانی با آنالیز اشعه X
3-5- ترکیب شیمیایی
3-6- خواص فیزیک شیمیایی
3-7- خردایش
3-7-1- خردایش خشک با سنگ شکن
3-7-2- خردایش تر
3-8- روش های جداسازی
3-8-1- جیک
3-8-2- سیکلون
3-8-3- مکاسیفایر آبی
3-8-4- فلوتاسیون
3-9- تکلیس مادة معدنی سمیرم
فصل چهارم: نتیجه گیری
4-1- خلاصة نتایج بدست آمده
4-2- فلوشیت
منابع و مأخذ
فهرست منابع فارسی.
 
فهرست جداول ها
عنوان                                 صفحه
مقدمه
1-1-    جدول تقسیم بندی فرآورده های نسوز
2-1- جدول تقسیم ثانویه بر اساس خواص در آدتاهپدرال میزال ها
2-2- جدول مهمترین تولید کنندگان کائولن
2-3- جدول پارامترهای مورد نیاز برای کائولن جهت تولید محصولات شاموتن نسوز
2-4- جدول پارامترهای مورد نیاز برای کائولن جهت تولید محصولات نسوز نمیدامیدی
2-5- جدول مهمترین کشورهای تولید کنندة بال کلی
2-6- جدول تقسیم بندی رس های بال کلی در صنعت سرامیک سازی
2-7- جدول تقسیم بندی خاک رس ها بر اساس اکثریت اندازة دانه ها به میلیمتر
2-8- جدول تقیسم بندی خاک رس ها بر اساس مواد دانه درشت برای صنعت سرامیک
2-9- جدول تقسیم بندی خاک رس ها بر حسب ترکیب دانه ها
2-10- جدول تقسیم درجة نسوزندگی و ضریب چسبندگی.
2-11- جدول تقسیم بندی محصولات آلومینیوم سیلیکاتی بر حسب نسوزندگی
2-12- جدول تولید – خاک نسوز در چهار سال 78- 79- 80- 81
3-1- جدول درصد خاک نسوز در معدن سمیرم
3-2- جدول ذخایر بلوک های مختلف معدن
3-3- جدول تجزیه شیمیایی لایة برداشت شده
3-4- جدول ترکیب لایه های کم آهن بر اساس رنگ ها
3-4- جدول ترکیب شیمیایی لایه میان و پایین از قسمت لایه مفید.
3-5- جدول نتایج بدست آمده از آزمایشات فیزیکی شیمیایی.
3-6- جدول رابطة اندازة دانه ها و پلاستیسیته.
 
فهرست نقشه ها
عنوان                                 صفحه
2-1- نقشه پراکندگی رس های نسوز در ایران
3-1- نقشه زمین شناسی منطقة معدنی سمیرم
 
فهرست شکل ها
عنوان                                     صفحه
1-1- شکل انواع مواد نسوز
4-1- شکل فلوشیت مراحل در معدن سمیرم
 


دانلود با لینک مستقیم


سمینار ارشد رشته معدن بررسی خاک شور سمیرم اصفهان و کاربردهای آن

دانلود مقاله ISI تحول کشاورزی در آرژانتین از طریق حفاظت از خاک

اختصاصی از فی دوو دانلود مقاله ISI تحول کشاورزی در آرژانتین از طریق حفاظت از خاک دانلود با لینک مستقیم و پر سرعت .

موضوع فارسی : تحول کشاورزی در آرژانتین از طریق حفاظت از خاک

موضوع انگلیسی : The transformation of agriculture in Argentina through soil conservation 

تعداد صفحه : 7

فرمت فایل :pdf

سال انتشار : 2014

زبان مقاله : انگلیسی

چکیده

تصویب هیچ تا یک نقطه عطف مهم در تحول کشاورزی در آرژانتین بود. این کاغذ
او از روند تصویب هیچ تا، و اثرات این در تولید محصولات کشاورزی. در حالی که قبلا، خاک
فرسایش تا شدید و فراگیر به عنوان به تهدید حیات اقتصادی و بقای صنعت، امروز با شد
اکثر محصولات به هیچ تا، آرژانتین تولید بیش از هر زمان در گذشته است. این مقاله همچنین نشان میدهد که چگونه پس از
برای اولین بار با تمرکز بر پذیرش فناوری (بدون شخم)، سیستم در آرژانتین در حال حاضر توسعه داد و مفاهیم
حفاظت کشاورزی (CA) و مدیریت زمین پایدار (SLM). این حرکت استراتژیک به کمک
صنعت کشاورزی در آرژانتین که از لحاظ اقتصادی و زیست محیطی پایدار تر از گذشته است.

واژه های کلیدی: حفاظت خاک، بدون شخم، کشاورزی حفاظتی، مدیریت پایدار زمین


دانلود با لینک مستقیم


دانلود مقاله ISI تحول کشاورزی در آرژانتین از طریق حفاظت از خاک