دانلود با لینک مستقیم و پر سرعت .
مقدمه
پیشرفتهای به وجود امده در جمعاوری داده و قابلیتهای ذخیره سازی در طی دهههای اخیر باعث شده در بسیاری از علوم با حجم بزرگی از اطلاعات روبرو شویم. محققان در زمینههای مختلف مانند مهندسی، ستاره شناسی، زیست شناسی و اقتصاد هر روز با مشاهدات بیشتر و بیشتری روبرو میشوند. در مقایسه با بسترهای دادهای قدیمی و کوچکتر، بسترهای دادهای امروزی چالشهای جدیدی در تحلیل دادهها بوجود اوردهاند. روشهای اماری سنتی به دو دلیل امروزه کارایی خود را از دست دادهاند. علت اول افزایش تعداد مشاهدات (observations) است و علت دوم که از اهمیت بالاتری برخوردار است، افزایش تعداد متغیرهای مربوط به یک مشاهده میباشد.
تعداد متغیرهایی که برای هر مشاهده باید اندازهگیری شود، ابعاد داده نامیده میشود. عبارت "متغیر" (variable) بیشتر در امار استفاده میشود در حالی که در علوم کامپیوتر و یادگیری ماشین بیشتر از عبارات "ویژگی" (feature) و یا "صفت" (attribute) استفاده میشود.
فهرست
مقدمه. 2
روش های مبتنی بر استخراج ویژگی.. 4
روش های انتخاب ویژگی.. 5
تعاریف.. 6
بررسی توابع مختلف ارزیابی و تولید کننده 10
توابع تولید کننده 11
جستجوی کامل.. 11
جستجوی مکاشفه ای.. 12
جستجوی تصادفی.. 12
توابع ارزیابی.. 12
دسته بندی و تشریح الگوریتم های مختلف انتخاب ویژگی.. 17
تابع ارزیابی مبتنی بر فاصله - تابع تولید کننده مکاشفه ای.. 18
روش Relief. 18
روش Jakub. 20
تابع ارزیابی مبتنی بر فاصله - تابع تولید کننده کامل.. 21
تابع ارزیابی مبتنی بر اطلاعات - تابع تولید کننده مکاشفه ای.. 23
1) روش درخت تصمیم(DTM) 23
الگوریتم C4.5. 23
2) روش استفاده شده توسط Kollerو Sahami 27
پوشش مارکوف.. 27
تابع ارزیابی مبتنی بر وابستگی - تابع تولید کننده مکاشفه ای.. 30
2) روش PreSet 31
تابع ارزیابی مبتنی بر سازگاری - تابع تولید کننده کامل.. 32
1) روش Focus. 32
2) روش Schlimmer 38
3) روش MIFES1. 38
تابع ارزیابی مبتنی بر سازگاری - تابع تولید کننده تصادفی.. 39
تابع ارزیابی مبتنی بر خطای طبقه بندی کننده- تابع تولید کننده مکاشفه ای.. 41
2) روش SBS (Sequential Backward Selection) 41
3) روش SBS-Slash. 41
4) روش PQSS ((p,q) Sequential Search) 42
5) روش BDS (Bi-Directional Search) 42
6) روش Schemata Search. 42
7) روش RC (Relevance in Context) 43
8) روش Queiros and Gelsema. 43
تابع ارزیابی مبتنی بر خطای طبقه بندی کننده - تابع تولید کننده کامل.. 43
تابع ارزیابی مبتنی بر خطای طبقه بندی کننده - تابع تولید کننده تصادفی.. 44
جمع بندی روش های انتخاب ویژگی.. 46
روش های فرا اکتشافی.. 49
روش های مکاشفه ای.. 50
انواع الگوریتمهای مکاشفهای.. 51
پیادهسازی الگوریتم های فرا اکتشافی.. 53
ویژگی های مشترک روش های فرا اکتشافی.. 54
دستهبندی الگوریتمهای فرا اکتشافی.. 54
الگوریتم ژنتیک (Genetic Algorithm) 56
مراحل الگوریتم ژنتیک... 59
انواع کدینگ... 59
روشهای کدینگ... 60
روش های پیاده سازی عملگر ترکیب.. 61
- ترکیب تک نقطهای : 61
- ترکیب دو نقطهای : 62
- ترکیب یکنواخت: 63
- ترکیب حسابی: 64
انواع روش های جهش... 65
الگوریتم ژنتیک برای انتخاب ویژگی.. 67
الگوریتم بهینه سازی جمعیت مورچگان (ACO) 68
الگوریتم ACO برای انتخاب ویژگی.. 71
الگوریتم بهینه سازی انبوه ذرات (PSO) 74
الگوریتم PSO برای انتخاب ویژگی.. 75
الگوریتم جستجوی ممنوعه (Tabu Search) 79
استراتژیهای پیشرفته جستجوی ممنوعه. 82
حافظه ها در جستجوی ممنوعه. 83
الگوریتم جستجوی ممنوعه برای انتخاب ویژگی.. 84
فهرست منابع و مراجع. 87
فهرست اشکال
عنوان صفحه
شکل 1- فرایند انتخاب ویژگی.. 11
شکل 2- مقایسه توابع ارزیابی مختلف.. 20
شکل 4- الگوریتم Branch and Bound. 26
شکل 5- الگوریتم درخت تصمیم. 30
شکل 9- الگوریتم روش Focus. 36
شکل 10- الگوریتمی دیگر از روش Focus. 37
شکل 11- الگوریتم Focus-2. 38
شکل 12- کلاسهای مورد بررسی در الگوریتم Focus. 39
شکل 13- روند الگوریتم Focus. 40
شکل 14- حل ناسازگاری در الگوریتم Focus. 41
شکل 15- الگوریتم روش LVF. 43
شکل 16- طبقهبندی روش های مختلف انتخاب ویژگی.. 50
شکل 1- بهینه محلی و بهینه کلی.. 61
شکل 7- ترکیب تک نقطهای.. 65
شکل 12- جهش باینری.. 69
شکل 17- فرایند انتخاب ویژگی در ACO.. 75