فی دوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی دوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

119- بررسی حفاری مکانیزه تونل مترو (T.B.M) – شامل 125 صفحه فایل ورد (word)

اختصاصی از فی دوو 119- بررسی حفاری مکانیزه تونل مترو (T.B.M) – شامل 125 صفحه فایل ورد (word) دانلود با لینک مستقیم و پر سرعت .

119- بررسی حفاری مکانیزه تونل مترو (T.B.M) – شامل 125 صفحه فایل ورد (word)


119- بررسی حفاری مکانیزه تونل مترو (T.B.M) – شامل 125 صفحه فایل ورد (word)

 

 

 

 

 

 

 

 

 

فهرست مطالب

عنوان  صفحه

فصل 1-         مقدمه  8

1-1-   پیشگفتار 8

1-2-   تاریخچه دستگاه‌های حفاری تونل  9

فصل 2-         تونل سازی و روش های مختلف آن   12

فصل 3-        تقسیم بندی ماشین های t.b.m    35

3-1-   ماشینهای حفر تونل از نوع باز 37

3-2-   ماشینهای حفر تونل تک سپره 39

3-3-   ماشینهای حفر تونل با سپر تلسکوپی  40

3-4-   مزایا معایب ماشین حفر تونل  41

3-5-   TBMهای غیر دایره‌ای  43

3-6-   TBMهای غیر دایره‌ای مخصوص سنگ سخت   45

3-7-   جمعبندی  47

فصل 4-         طرز کار TBM    48

4-1-   نحوه تخلیه مواد حفر شده توسط ماشین‌های تی بی ام: 48

4-2-   قیمت این ماشین‌ها: 48

4-3-   نحوه عملکرد دستگاه حفاری تمام مقطع به روش مکانیزه TBM   48

4-4-   پروسه حفاری دستگاه حفاری تمام مقطع به روش مکانیزه 49

4-5-   توتال استیشن  51

4-6-   Tbmها چگونه راه خود را می یابند؟ 54

فصل 5-        معرفی و بررسی سیستمهای تهویه تونل   57

فصل 6-         قالب بندی و اجرای دیواره تونل   66

6-1-   نیمرخهای عرضی تونل  66

6-2-   مراحل آستر کاری تونل  66

6-3-   آهن تقویت کننده (آرماتور ) 68

6-4-   کفراژ برای بتن ریزی آستر 68

6-5-   قالب کف: 72

6-6-    قالب بدنه و طاق(تاج): 72

6-7-   طول قالب: 74

6-8-   بتن ریزی قالب بدنه و طاق: 74

6-9-   آستر کاری تونل بوسیله پمپ بتن  76

6-10-  ریختن بتن آستر 78

6-11-  آستر تونل با بتن ریز تحت فشار هوا 79

6-12-  بتن ریزی به روش شیب پیوسته پیش رونده: 80

6-13-  روش تیغه ای: 81

6-14-  تأثیر تجهیزات بتن ریزی: 82

6-15-  تراکم بتن: 82

6-16-  قالب برداری: 83

فصل 7-        آزمایش زمین   84

7-1-   زمینهای ماسه ای : 84

7-2-   زمینهای دجی : 84

7-3-   زمینهای رسی : 85

7-4-   زمینهای سنگی : 85

7-5-   زمینهای مخلوط : 85

7-6-   زمینهای بی فایده : 85

7-7-   آزمایش زمین : 86

7-8-   امتحان مقاومت زمین : 86

7-9-   افقی کردن پی ها (تراز کردن) : 87

7-10- شفته ریزی : 87

7-11- پی سازی : 89

7-12- پی سازی با سنگ : 90

7-13- پی سازی با بتن : 90

7-14- پی سازی و پی کنی با هم : 91

7-15- پی کنی در زمین های سست : 91

7-16-  پی کنی در زمین های خاک دستی و سست : 92

7-17- طریقه عمل : 93

7-18- حفر گمانه  94

7-19- جهت یابی گمانه  97

فصل 8-        جزئیات ماشین حفر تمام مقطع   99

8-1-   مقدمه  99

8-2-   تاریخچه  99

8-3-   قسمت های مختلف ماشین TBM   100

8-4-   مراحل کار TBM   103

8-5-   بررسی عملکرد TBM   104

8-6-   تعاریف و اصطلاحات لازم برای بررسی عملکرد TBM   104

8-7-   مکانیسم های حفاری در TBM   109

8-8-   روش های پیش بینی عملکرد TBM   110

8-9-   عملکرد TBM در انواع مختلف سنگ   110

8-10- طراحی TBM ها 112

8-11- تکنولوژی های جنبی در TBM   115

فصل 9-         ارزیابی ریسکهای ژئوتکنیک در حفاری های تمام مقطع مکانیزه  116

9-1-   مقدمه  116

9-2-   متدولوژی ارزیابی ریسکهای ژئوتکنیکی  116

9-3-   منابع ریسک اولیه در تونلسازی مکانیزه در مناطق شهری: 117

9-4-   فعال سازی برنامه مدیریت ریسک جهت کاهش کلیه ریسک ها 117

فهرست مراجع   122

 

 

  1. نحوه تخلیه مواد حفر شده توسط ماشین‌های تی بی ام:

مواد حفر شده به وسیله سیستم ویزه ای که معمولا مرکب از سطل های تعبیه شده پیرامون صفحه حفار است از جلوی جبهه کار جمع آوری شده و به داخل نوار نقاله ای که از داخل دستگاه می گذرد به پشت ماشین هدایت می شود گرچه معمولا محدودیتی برای ابعاد مواد حفر شده و انتقال آنها وجود ندارد اما اگر ابعاد حفر شده خیلی زیاد باشد ممکن است گیر کنند وعمل اتقال را متوقف سازند.

از طرفی مواد خیلی نرم نیز علاوه بر مشکل تهویه ممکن است مخلوتی را تولید کنند که به شدت ساینده باشند. در بعضی از این نوع ماشین ها در مجاورت صفحه حفار پرده هائی تعبیه می شود که گرد و غبار را می گیرند این ذرات در اثر اسپری آب جدا می شوند.

  1. قیمت این ماشین‌ها:

قیمت tbm گران است و بیشتر به نوع سفارش داده شده به کارخانه سازنده و نوع سنگ های حفر شونده بستگی دارد. ولی در کل قیمت آنها را می توان در حدود 7 یا 8 میلیارد تومان در نظر گرفت.

البته بسته به شرایط قیمت آنها ممکن است کمتر یا بیشتر باشد. از مهم ترین سازندگان این نوع ماشین‌ها می‌توان از شرکت ویرث نام برد.

  1. نحوه عملکرد دستگاه حفاری تمام مقطع به روش مکانیزه TBM

حفاری این دستگاه در اصول حفاری مکانیزه شامل مراحل خاص و با برنامه‌ریزی دقیق زمانی و تجهیزاتی فراوان است.

انجام پروسه حفاری، تأیید جهت و مسیر صحیح، انجام پروسه تقویت دیواره، پروسه تخلیه مصالح، سیستم پایش هوا، نگهداری و تعمیرات.

پس از مونتاژ کامل دستگاه و تست نهایی دستگاه آماده شروع حفاری خواهد بود. اما در ابتدا باید بستر حفاری آماده شود.

یک کوه را در نظر بگیرید، برای اینکه دستگاه بتواند عملیات حفاری را شروع کند ابتدا می بایست دهانه ای با قطر متناسب با قطر دستگاه حفاری در کوه ایجاد شود تا سر برنده دستگاه (Cutter Head) بتواند روی متریال قرار گیرد و در انجام عملیات حفاری وقفه ایجاد نشود.

به بستر حفاری اصطلاحاً "ترانشه" گفته می‌شود. ترانشه شامل خاک برداری از سطح رویی زمین تا رسیدن به بستر سخت و سنگی، ایجاد یک تونل با قطر متناسب با قطر دستگاه حفاری، انجام عملیات سخت سازی( انجام مش و شات کریت) در اطراف دهانه و عملیات تقویت دیواره(لاینینگ) داخلی دهانه می باشد.

پس از انجام عملیات آماده سازی سایت و پورتال اختصاصی، ریل گذاری در دهانه انجام می‌شود تا دستگاه روی ریل قرار گرفته و دستگاه آماده شروع عملیات حفاری شود.

  1. پروسه حفاری دستگاه حفاری تمام مقطع به روش مکانیزه

آماده سازی دستگاه از نظر الکتریکی و مکانیکی و تأمین نیروی هیدرولیکی دستگاه در بخش پشتیبان (BU) انجام می‌گیرد. سپس مسیر با لیزر مشخص شده و اپراتور دستگاه تنظیمات لازم جهت انجام حفاری را انجام می‌دهد. سیستم‌های تهویه هوا و تخلیه مصالح روشن شده و سیستم های کنترلی فعال می شوند. حالا وقت شروع است.

سر برش بوسیله الکتروموتورها و جعبه دنده‌های قوی به چرخش درمیآید و جک‌ها سر برش را به جلو هل می‌دهند تا دیسک‌ها با سطح سنگ برخورد کرده ، آنها را خرد کند و به سیستم تخلیه مصالح انتقال دهد. کاتر به اندازه مشخصی به جلو پیش می رود. پس از آن متوقف شده و انجام عملیات تکمیلی تخلیه انجام میگیرد. به این عملیات اصطلاحاً یک کورس حفاری گفته می شود.

پس از انجام حفاری عملیات لاینینگ انجام شده و دستگاه توسط جک‌های قدرتمند، خود را به جلو هل می‌دهد. به این پروسه تریلینگ (Traling) گفته می‌شود. سپس دستگاه دوباره تنظیم شده و این سیکل تکرار می‌شود.

در برخی از موارد که مصالح سخت تر بوده و امکان ریزش در حداقل است میتوان Telescop Shield را فعال کرد. این امر به شما این امکان را میدهد تا در هنگام انجام عملیات حفاری به صورت همزمان به انجام عملیات لاینیگ بپردازید و درمواقع لزوم به راحتی تلسکوپ شیلد را به عقب کشیده (Retract) و عملیات تعمیر یا بازدید دیسک‌ها را انجام دهید یا حتی سطح حفاری را بررسی نمایید.

این تکنیک تنها در سیستم های Duble Shield امکان پذیر است و نحوه عملکرد آن مختصراً به این گونه است که شیلد عقبی یا Gripper Shield توسط جکهای گریپر در جایش فیکس می شود و شیلد جلویی یا Front Shield و کاتر هد به وسیله جکهای Advance به جلو هل داده می‌شوند، در همین زمان شما می‌توانید جکهای Auxilary Thrust را جمع کنید و عملیات لاینینگ را همزمان با انجام عملیات حفاری انجام دهید.

در اصطلاح به عملیات بازشدن جک ها Extend و به عملیات جمع کردن آنها Retract می گویند.

در تمام مراحل انجام عملیات حفاری سنسورها و دستگاه های مختلف فرایند انجام عملیات، فشار وارده بر کاتر، جک ها و بدنه ؛ جهت مسیر، احتمال وجود گاز و یا کم شدن اکسیژن، تعادل در جریان های الکتریکی و هیدرولیکی وارده به دستگاه و بسیاری از مسائل حیاتی و ضروری دیگر دائم در حال کنترل هستند.

  1. توتال استیشن

توتال استیشن های جدید (Total Station) با استفاده از یک پایه ثابت در دیواره تونل نصب می شوند. یک دستگاه گیرنده و بازتاب کننده منشوری نیز به همین ترتیب نصب می شود. محل قرارگیری هر یک از این دو وسیله، توسط تیم نقشه برداری و به منظور تعیین موقعیت سه بعدی هر کدام، در سیستم مختصاتی پروژه، مساحی شده است. این دو نقطه، موقعیت های مشخصی هستند که موقعیت ماشین تونلسازی در مراحل بعدی با توجه به همین نقاط تعیین می شود. با کنترل از راه دور با کامپیوتر، دستگاه توتال استیشن به سمت هدف های مشخص شده قراول رفته و فواصل هر یک را با ماشین حفار قرائت می کند.

دستگاه توتال استیشن زوایا و فواصل بین نقاط هدف را مشخص و به اپراتور منتقل می کند. یک شیب سنج الکترونیکی نیز بر روی دستگاه حفاری و به منظور اندازه گیری دقیق هرگونه انحراف به چپ یا راست و یا اختلاف با شیب طراحی، نصب شده است. نتایج این اندازه گیری ها با استفاده از معادلات مشخص توسط تیم نقشه برداری، پردازش می شوند. در پایان کار نیز با استفاده از یک سیستم معروف (Poltinger Precision System) فایل داده های موجود که در هنگام راه اندازی برنامه کامپیوتری سیستم راهنما و به عنوان داده های اولیه طراحی به سیستم داده شده بود با اطلاعات مکان یابی به صورت درجا و بدون وقفه مقایسه شده و نتایج آن به صورت نمایش نمودارهای جهت دار به اپراتور ماشین حفار منتقل می شود. سایر اطلاعات مفید نیز در صفحه نمایشگر اپراتور مشهود می باشد.

قابلیت فرعی، ولی مهم سیستم های راهنمای الکترونیکی، محاسبه سریع، انتخاب و جهت یابی آسترهای پیش ساخته بتنی در تونل ها است. با این قابلیت، خصوصیات هندسی حلقه ها، میزان انبساط سیلندر و محکم نبودن عقب دستگاه نصاب، نوع رینگ و محل قرارگیری قطعه راهنمای حلقه ها و نیز ترتیب قرارگیری رینگ ها، مشخص می شود. نمایش گرافیکی نصب رینگ ها و نیز ترتیب نصب آنها، از طریق یک پایگاه داده و به منظور استفاده تحلیلی در مدیریت ساخت تونل انجام می شود.

کلیه عملیات سیستم راهنمای توتال استیشن مذکور به استثنای جابجایی دوره ای دستگاه و منشور انعکاس دهنده نصب شده روی دیواره تونل، بدون استفاده از دست و به صورت تمام اتوماتیک انجام خواهد شد. این ویژگی باعث افزایش دقت جابجایی و به حداقل رساندن زمان پروژه و نیز عدم نیاز به پرسنل بیشتر می باشد.

 


دانلود با لینک مستقیم


119- بررسی حفاری مکانیزه تونل مترو (T.B.M) – شامل 125 صفحه فایل ورد (word)

دانلود مقاله اثر زلزله بر سازه های زیر زمینی و تونل

اختصاصی از فی دوو دانلود مقاله اثر زلزله بر سازه های زیر زمینی و تونل دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله اثر زلزله بر سازه های زیر زمینی و تونل


دانلود مقاله اثر زلزله بر سازه های زیر زمینی و تونل

 برآورد خطر پذیری تونلها

 برآورد خطر بر اساس HAZUS99:

در مجموعه HAZUS99 که توسط NIBS آمریکا تهیه گردیده، بصورت کامل آسیب پذیری سازه‌های مختلف در برابر زلزله مورد بررسی قرار گرفته است، این مجموعه بر اساس داده‌های آمریکا تهیه شده و بصورت مجموعه‌ای در 30 سی دی منتشر گردیده است.HAZUS99 دارای راهنمای کاملی است که فصل هفتم آن به شریانهای حیاتی اختصاص دارد. در بررسی آسیب پذیری شریانهای حیاتی، آنها را به هفت زیر مجموعه تقسیم می‌نماید که عبارتند از:

  • بزرگراه
  • راه آهن
  • قطار برقی
  • حمل و نقل اتوبوسی
  • بندر
  • حمل و نقل آبی
  • فرودگاهها

در تقسیم بندی فوق، هرکدام از سیستم های حمل و نقل دارای اجزائی می‌باشند که تونل جزو اجزای بزرگراهها و سیستم راه آهن میباشد. لذا ما نیز بصورت جداگانه نقش تونل را در هر کدام از تقسیم بندی‌های شریانهای حیاتی مورد بررسی قرار می‌دهیم.

 

تونل در سیستم بزرگراهی :

تونل یکی از اجزای سیستم بزرگراهی می‌باشد که به همراه سیستم راه و پلهای بزرگراهی، مجموعه بزرگراهها را تشکیل می‌دهد. از میان اجزای مختلف سیستم بزرگراهی ما فقط به بررسی آسیب پذیری تونلها می‌پردازیم.

1-   داده های ورودی مورد نیاز

  • مکان ژئوفیزیکی تونلها (طول و عرض)
  • حداکثر شتاب زمین و حداکثر جابجائی زمین (PGD , PGA) در محل تونل.
  • کلاس بندی تونل

2-   تونلها در بحث آسیب پذیری بر اساس نحوه ساخت کلاس بندی می‌شوند:

  • تونل حفاری شده (سوراخ شده)
  • تونل خاکبرداری شده

3-   تعاریف مربوط به سطح آسیب به تونلها

  • Ds1 : بدون آسیب
  • Ds2 : آسیب جزئی

آسیب جزئی به تونلها شامل ترکهای جزئی در پوشش تونل ( خرابی فقط نیاز به یک تعمیر سطحی داشته باشد) و افتادن چند سنگ  و یا نشست جزئی در زمین در ورودی تونل

  • Ds3 : خرابی متوسط

بصورت ترکهای متوسط در پوشش و فروریزش سنگ تعریف می‌شود.

  • Ds4 : خرابی گسترده

بصورت نشستهای جدی در یک ورودی تونل و ترکهای گسترده در پوشش تونل

  • Ds5 : خرابی کلی

ترکهای جدی در پوشش تونل که ممکن است شامل ریزش احتمالی باشد.

شامل 10 صفحه فایل word قابل ویرایش


دانلود با لینک مستقیم


دانلود مقاله اثر زلزله بر سازه های زیر زمینی و تونل

دانلود مقاله تونل باد

اختصاصی از فی دوو دانلود مقاله تونل باد دانلود با لینک مستقیم و پر سرعت .

 

 

تاریخچه تونل باد
قبل از اختراع تونل باد برادران رایت، مطالعات و آزمایشات آیرودینامیکی دستگاه بازوی چرخنده انجام می‌شد. این دستگاه اولین بار در سال 1800 میلادی توسط سر جرج کیلی توسعه پیدا کرد.
برادران رایت با همکاری اکتاو چانت در سال 1901 برای مطالعه تاثیرات جریان هوا روی اشکال مختلف اقدام به طراحی و ساخت تونل باد ساده‌ای نمودند. این تونل باد ساده اخیرا نیز برای تست پرنده مدرن و کم سرعت آلباتروس ، مورد استفاده قرار گرفته است.
پس از آن با توسعه علم آیرودینامیک و پایه گذاری رشته مهندسی هوایی، استفاده از تونل باد نیز افزایش یافت.
تونلهای باد معمولا از لحاظ حجم و سرعت جریان دارای محدودیت بودند. تونل بادی که قبل از جنگ جهانی دوم توسط آلمانیها مورد استفاده قرار گرفت، شامل حفره‌های طبیعی بزرگی بود که محتوی حجم زیادی از هوا بود که می‌توانست در مسیر تونل باد جریان یابد. این ابتکار باعث افزایش سرعت پیشرفت آلمانیها در صنایع هوایی گردید.
در تحقیقات بعدی در زمینه جریان با سرعت نزدیک صوت یا مافوق صوت از این تکنولوژی استفاده شد. محفظه‌های فلزی فشار برای ذخیره‌سازی هوای پرفشار مورد استفاده قرار گرفتند. این هوا پس از عبور از نازل به سرعت مافوق صوت می‌رسید.
اگر چه طرح کلی یک تونل باد پیچیده است، ولی اکثر تونلهای باد از پنج قسمت اصلی تشکیل شده‌اند. این پنج قسمت در شکل زیر نشان داده شده‌اند.


هنگامیکه هوا وارد محفظه تصفیه یعنی اولین بخش تونل می‌شود، اغتشاشات جریان هوا کاهش می‌یابد. وجود اغتشاش و هوای ناپایدار می‌تواند باعث تولید نیروهای غیرقابل پیش‌بینی در بخش تست شده و توانایی تونل را در شبیه‌سازی شرایط پروازی کاهش دهد. بیشتر محفظه‌ها شامل پرده‌های شبکه‌بندی سیمی و یک صاف‌کننده لانه زنبوری جریان هستند که مانع از چرخش جریان در درون تونل باد شده و جریان ملایمی را درون تونل بوجود می‌آورند. بعد از این مرحله هوا وارد مخروط انقباضی یا نازل می شود. سرعت هوا در حین عبور از این بخش افزایش می‌یابد و سپس وارد بخش تست می‌شود. این بخش معمولا مستطیل شکل است ولی در برخی از تونلهای باد به صورت جت باز خواهد بود. مدل یا نمونه آزمایش درون این بخش قرار گرفته و حسگرها تاثیر نیروهای لیفت و درگ را روی مدل اندازه‌گیری کند.
قسمت بعد شامل یک دیفیوزر است که سرعت هوا را کاهش می‌دهد . بخش نهایی هوا را از تونل خارج می‌کند. نیروی لازم برای مکش هوا از طریق فنهای بزرگی که پهنای آنها به 40 فوت نیز می‌رسد، تامین می‌شود.
کاربردهای تونل باد
بعضی از عملیاتهایی که بصورت معمول در تونلهای باد انجام می‌شود شامل موارد زیر است:
- اندازه‌گیری درگ/لیفت روی هواپیما، هلیکوپتر، موشک و ماشینهای مسابقه‌ای.
- مشخصات مربوط به ممان/لیفت/درگ ایرفویلها و بالها.
- پایداری استاتیکی هواپیماها و موشکها.
- پایداری دینامیکی مشتقات هراپیما.
- توزیع فشار سطحی روی تمامی سیستمها.
- مشاهده جریان (با دود، پودر سیلیکات منیزیم و یا روغن.
- عملکرد ملخ (گشتاور، تراست، توان، بازده و ...
- عملکرد موتورهای تنفسی.
- تاثیرات باد روی ساختمانها، دکلها، پلها و اتومبیلها.
- ویژگیهای انتقال حرارت موتور و هواپیما.
البته تعدادی از این عملیات در تونلهای آب نیز قابل بررسی هستند.

 

طبقه بندی انواع تونل باد
تونلهای باد براساس ساختمان به دو دسته مدار بسته یا مدار باز تقسیم می‌شوند. در سیکل باز ورودی و خروجی تونل به هم متصل شده‌اند. این سیستم از نظر اقتصادی چندان مقرون به صرفه نیست بنابراین بیشتر تونلهای باد امروزه از نوع سیکل بسته هستند. در این نوع ، هوای استفاده شده پس از عبور از پره‌های مخصوصی دوباره مورد استفاده قرار می‌گیرد و بدین ترتیب افت انرژی و اغتشاش به حداقل مقدار خود می‌رسد.

انواع دیگر طبقه بندی نیز وجود دارد که شامل موارد زیر است:
بر حسب سرعت (مادون صوت، انتقالی، مافوق صوت و یا ماورا صوت). براساس فشار هوا ( اتمسفریک یا با چگالی متغیر) ، بر اساس اندازه (معمولی یا با مقیاس کامل). تعدادی تونل باد نیز وجود دارد که در گروه مشخصی قرار نمی‌گیرند. از انجمله تونلهای شاک، تونل جت پلاسما، تونل hot-shot و تونل metereologic را می توان نام برد.

 

تجهیزات اولیه در تونل باد
سیسنتمهای اندازه گیری فشار که فشار را به سیگنالهای الکتریکی با فرکانسهای مناسب برای ترانسدیوسرها و استرین‌گیج‌ها تبدیل می کنند. اندازه‌گیری دما، گرادیان دما و انتقال حرارت با ترموکوپل ترمستور و حسگرهای مقاوم انجام می‌شود. سطوح اغتشاشی نیز با سیستمهای لیزری (LDA,Laser Doppler Anemometry)، سیمهای داغ، بادسنجهای دمایی و سیستمهای ردیابی (PIV,Particle Image Velocimmetry) اندازه‌گیری می‌شوند.
تحلیل جهت جریان (خطوط جریان) با سیستمهای بسیار ساده که شامل قرار دادن دسته‌های پرزدار روی سطح مدل است انجام می شود. از روغن و رنگ برای اغتشاش وخطوط جریان روی سطح ، از دود برای مشاهده میدان جریان و از روش Schlieren photography نیز برای مشاهده امواج شاک استفاده می‌شود. روشهای دیگر شامل تکنیکهای shadowgraph و اینترفرومترهای نوری می‌شود. برای سرعتهای بالاتر از روشهای جذبی استفاده می شود.

آشکار سازی جریان روی بال

مشکل تداخل در تونل باد
تداخل در بخشهای مختلف تونل باد بدلیل انسداد مسیر جریان بوسیله مدل یا انعکاس امواج از دیواره در سرعتهای معادل یا مافوق صوت، بوجود می‌آید. انسداد که در تونلهای باد با سایز محدود در هنگام تست مدلهای بزرگ اتفاق می‌افتد، به صورت نسبت مساحت جلو مدل به مساحت قسمت تست تعریف می‌شود. نسبت انسداد باید همیشه از 10 درصد کمتر باشد.
از آنجائیکه وجود مدل در قسمت تست مانع عبور جریان شده و باعث افزایش فشار روی دیواره‌های تونل می‌شود بنابراین گاهی از تونلهای باد با مقطع باز یا تونلهایی با دیواره‌های منفذدار استفاده می‌شود.

انعکاس شاک در تونل باد مافوق صوت
دوره پروازهای مافوق صوت
تونل‌های باد مافوق صوت و مادون صوت چه تفاوتهایی با هم دارند؟
در اواخر دهه 1940 شکستن دیوار صوتی مهمترین مسئله برای هواپیماهایی بود که می‌خواستند سریعتر و سریعتر پرواز کننداز طرفی در این دهه قیمت تولید هواپیماها نیز به سرعت افزایش یافت در نتیجه طراحان در صدد برآمدند تا بصورت ریاضی مدلسازی کرده و بدون ساختن خود هواپیما عملکرد آنرا شبیه‌سازی کنند. بنابراین هر دو مسئله باعث احساس نیاز بیشتری برای طراحی تونلهای باد پیچیده می‌شد.
در یک تونل باد با قدرت هر چه تمامتر و فنهای قویتر، جریان هوا در نازکترین بخش قسمت تست شاک شده و به ماخ 1 که همان سرعت صوت است، می‌رسد. هر اندازه که فنها سریعتر کار می‌کردند باز هم سرعت جریان هوا در این بخش همان ماخ 1 باقی می‌ماند. مسئله مشابهی از این شاک در قسمت نازک موتورهای راکت نیز نیز اتفاق می‌افتد. با این وجود گازهای داغ خروجی از موتور راکت دارای سرعت مافوق صوت خواهند بود. بنابراین در تونلهای باد مافوق صوت نیز از نازل انبساطی مشابهی برای رسیدن به سرعت مافوق صوت استفاده می‌شود. ظاهرا بر خلاف واقع مدل نمونه در تونل باد در قسمت پایین دست جریان در گلوگاه یعنی جایی که شاک اتفاق می‌افتد، قرار می‌گیرد. در این قسمت از نازل مساحت سطح مقطع تونل افزایش می‌یابد ولی سرعت هوا کاهش نمی‌یابد بلکه تمامی انرژی پمپ شده بوسیله فنها که به صورت فشار و انرژی گرمایی ذخیره شده به انرژی جنبشی تبدیل می‌شود. موتور راکت نیز تقریبا همینطور کار می کند فقط انرژی آن بجای فن از طریق سوختن سوخت بدست می‌آید. جریان هوا هنگامیکه از کوچکترین سطح مقطع عبور می‌کند به سرعت مافوق صوت می‌رسد.
توسعه مهمی که در این دوره روی تونلهای باد انجام گرفت ایجاد شکافها یا سوراخهایی روی دیواره تونل بود. یکی از مشکلاتی که درون تونلهای باد وجود دارد اینست که جریان هوایی برخوردی از روی مدل میتواند به دیواره تونل آسیب برساند. جریان به سمت مدل برگشته و باعث بروز خطا در اندازه‌گیری‌های آزمایش می‌شود ری رایت محققی در لنگلی پیشنهاد کرد که با گذاشتن سوراخهایی روی دیواره تونل باد جریان هوای آرامی در اطراف مدل ایجاد کنیم.

خواص تونل باد برای شش رژیم سرعتی
نازل یا بخش انبساطی قسمت تست مافوق صوت برای هر مقدار ماخ مافوق صوتی دارای شکل منحصر به فردی است. بطور مثال نسبت قسمت تست به مساحت گلوگاه برای ماخ 2 برابر با 1.69 و برای ماخ 10 برابر با 536 می‌باشد. بنابراین برای اینکه یک تونل باد مافوق صوت بتواند برد وسیعی از ماخهای مافوق صوت را شامل شود باید شکل نازل در این تونل متغیر باشد. این مسئله بوسیله نازلهای قابل تعویض و یا نازلهای دارای دیواره متغیر و ... حل شدنی است. یک طرح برای طراحی چنین نازلهایی در هنگام عملکرد تونل باد اینست که اساسا یک دیواره نازل ثابت نگه داشته شده در حالیکه دیواره روبرویی آن بصورت محوری لغزیده و حرکت می‌کند و باعث تغییر سطح مقطع نازل می‌شود. بنابراین مسئله قابل تغییر بودن شکل نازل اولین تمایز از سه تفاوت بین تونلهای بااد مافوق صوت و مادون صوت است.
دومین تفاوت بین این دو نوع تونل مقدار انرژی از دست رفته هوای گردش یافته است. در تونلهای باد مافوق صوت فنها تنها نیاز دارند که فشار هوا را تا 10 درصد افزایش دهند تا انرژی از دست رفته توسط دیواره تونل، مدل، تجهیزات و ... را جبران کند. در یک تونل باد ماخ 2 فشار باید تقریبا 100 درصد افزایش یابد. بنابراین یک فن ساده تونل باد مادون صوت باید به کمپرسور چند مرحله‌ای از فنها تبدیل شود. واضح است که برای تولید نیروی به این بزرگی توان بیشتری نیز نیاز است. علت افت انرژی زیاد در تونل باد مافوق صوت اساسا امواج شاک است که بلافاصله در جریان بعد از قسمت تست ایجاد می‌شود. جاییکه سرعت جریان اصلی از مافوق صوت‌به مادون کاهش می‌یابد. افت انرژی از طریق امواج شاک ذاتا در همه جریانهای مافوق صوت‌ وجود دارد بنابراین در تونل باد مافوق صوت فنهای الکتریکی یا کمپرسورها باید این انرژی را تامین کنند.

تونل باد مافوق صوت متغیر نامتقارن
سومین و آخرین تفاوت مهم میان تونل‌های باد مافوق و مادون صوت مربوط به خود جریان هواست. تونل باد نه تنها باید کاملا تمیز شده و فاقد بخار، روغن، گرد و غبار و هر شی خارجی باشد بلکه باید از چگالش یا میعان بخار آب موجود در هوا نیز اجتناب نمود. هنگامیکه جریان هوای تونل در نازل انبساط می‌یابد، گرمای نهان در هوا به انرژی جنبشی تبدیل شده و دمای هوا افت می‌کند و احتمال میعان بخار آب وجود دارد اما با خشک کردن هوا می‌توان از این امر جلوگیری کرد.
ازآنجایی که توان لازم برای به کار انداختن تونلهای باد مافوق صوت بسیار زیاد و در حدود بیش از 50 مگاوات در هر متر مربع از قسمت آزمایش است بنابراین بیشتر تونلها بطور متناوب از انرژی ذخیره شده در تانکرهای فشار بالا یا تانکرهای خلا استفاده می کنند.

تونل باد مافوق صوت
سطح قسمت تست تونلهای مافوق صوت در داقع شبیه به سطح آیینه است . به این دلیل که حدافل خراش یا نقصی در سطح تونل جریان هوای داخل تونل را بر هم زده و باعث کاهش دقت آزمایش می‌شود. وجود ناخواسنه برهم زننده و مغشوش کننده جریان در شکل زیر نشان داده شده است. فقط تعداد کمی ترک یا خراش باعث تولید cries-cross خطوط ماخ فطری خواهد شد. هر خط ماخ یک موج شاک کوچ است که در محل وجود نقص بوجود می‌آید و بسته به سرعت هوای درون تونل زاویه خاصی پیدا می‌کند مثلا در ماخ 1 خطوط ماخ عمود بر جریا است. بطور کلی این زاویه در ماخ برابر arcsin 1/M خواهد بود. برای نشان دادن چگونگی تولید خطوط ماخ توسط ذره‌های کوچک روی دیواره تونل، ذرات ریزی روی نوار Scotch با ضخامت 0.003 اینچ برروی دیواره تونل قرار می‌گیرند و باعث تولید خطوط ماخ می‌شوند. بخشی از نوار درون لایه مرزی مادون صوت قرار می‌گیرد که ضخامت آن 0.3 اینچ یعنی 100 برابر ضخامت نوار است ولی در هر صورت تاثیر ذرات کوچک از میان لایه مرزی حس می‌شود.
به هر حال وجود خطوط ماخ درون تستهای تونل باد ناخوشایند است و بخش تست هر تونل مافوق صوتی باید به اندازه کافی صیقلی باشد .

ذرات کوچک روی دیواره یک تونل باد مافوق صوت باعث تولید خطوط ماخ شده‌اند.
a)در ماخ 2 این خطوط با محور تونل زاویه 30 درجه می‌سازند. b ) خطوط ماخ تولیدی که بخشی از آن در لایه مرزی مادون صوت قرار گرفته است.

 

افزایش و بهبود عملکرد تونلهای باد مافوق صوت
در حال حاضر فرآیند جدیدی برای شکل هندسی نازل که برای کنترل عدد ماخ در قسمت تست ضروریست، بکار برده می‌شوود. تعیین و حدس شکل نازل در یک ماخ مافوق صوت احتیاج به زحمت زیادی دارد با سیستمهای جدید پیش‌بینی شکل نازل برای ماخهای بین 1.4 تا 4.3 آسانتر خواهد بود. قبل از سال 1991 HSWT مکانیزم کنترل شکل نازل شامل یک سیستم پیچیده cam بود. ایجاد شکل دلخواه برای نازل بسته به پیچیدگی سیستم فرآیند بسیار وقتگیری بوده که دارای دقت کافی نیز نیست. سیستم cam بوسیله یک جک هیدرولیکی و سیستم فیدبک encoder جایگزین شد. روش پیشگویی شکل نازل شامل برونیابی مختصه‌ها از مجموع مختصه‌های ماخ بجا مانده از سیستم موجود می‌باشد. علاوه بر این هیچ روشی برای ست کردن نازلها بصورت متقارن و مشحص کردن ویژگی فیدبک جک هیدرولیکی نسبت به هندسه واقعی نازل در تونل وجود ندارد.بنابراین توسعه روش پیشگویی شکل نازلهای قابل تغییر که فادر به پیشگویی و بکارگذاری دقیق شکل نازلهاست، از اهمیت بالایی برخوردار است.
بدلیل پیچیدگی این امر پروژه به چهار بخش تقسیم شده است:
- توسعه یک کد برنامه نویسی دو بعدی که بتواند به صورت تئوری شکل نازل را برای دستیابی به ماخ مشخص در قسمت تست پیش‌بینی کند.
- طرح یک سیستم سنجش نقشه نازل برای مشخص کردن سیستم کنترل شکل نازل کنونی (NCMS) و بکار گذاری این نازل تئوری روی سیستم.
- چک کردن مجموعه جدید اشکال و تصحیح شکل برای تاثیرات لایه مرزی از طریق روشهای اصلاح با سعی و خطا.
- در نهایت تمامی مراحل بالا با استفاده از مجموعه بزرگی از اطلاعات که در طول کالیبره شدن جمع‌آوری شدند، شکل نهایی نازل را مشخص خواهند کرد.

 

کاهش اغتشاش در تونل باد
در این قسمت نگاهی اجمالی در مورد تاثیر اغتشاش در تونلهای باد و طراحی مناسب آن برای داشتن اغتشاشهای کم یا زیاد، خواهیم داشت. آزمایشهای انجام شده در تونلهای باد نشان‌دهنده تاثیر پارامترهای مختلف در اندازه توربولانس می‌باشد.
تغییرات مناسب در اندازه، شکل و ضخامت دیواره‌‌های سلولهای لانه زنبوری دارای تاثیرات کمی هستند. اضافه کردن یک صحه لانه زنبوری دیگر هم تاثیر چندانی در کاهش میزان اغتشاش نخواهد داشت. اما با افزایش فاصله صفحه لانه زنبوری و بخش اندازه‌گیری و همچنین کاهش زیاد مساحت در مخروط ورودی مقدار اغتشاش کاهش خواهد یافت.
درک تاثیر اغتشاش در تونل باد بدین ترتیب شروع شد که در سال 1911 ایفل مقاومت هوا را روی یک کره در تونل بادی که جدیدا ساخته بود، اندازه گرفت و مقدار ضریب پسا را 0.18 بدست آورد. یک سال بعد فوپل بیان کرد که مقدار ضریب درگ ایفل کاملا نادرست بوده و ضریب درست برابر 0.44 یعنی حدود سه برابر ضریب ایفل است. اما ایفل با انجام آزمایشهای دیگر روی کره با ابعاد مختلف و در تونل بادهای دیگر ، در صدد نشان دادن صحت ادعای خود برآمد.
اولین سرنخ برای توجیح این تفاوت توسط ویلزبرگر ارائه شد. نتایجی که ویلزبرگر با ایجاد اغتشاش در جلو کره به آن رسیده بود، مشابه نتایج ایفل بود. وی اینکار را از طریق قرار دادن صفحه مش‌بندی شده در مقابل جریان هوا در جلو کره یا با قرار دادن یک رینگ سیمی روی سطح کره روی صفحه‌ای عمود بر جهت باد، انجام داد. پس از انجام آزمایشات بسیار نتیجه نهایی اینگونه بود که ضریب درگ کره در هوا تنها به قطر کره بستگی ندارد بلکه به سرعت، چگالی، لزجت و همچنین شدت توربولانس جریان هوا نیز وابسته است.
جسم دیگری که نتایج بدست آمده روی آن در تونل باد های مختل بسیار متفاوت بود، اجسام خط جریانی بودند. مقدار ضریب درگ بدست آمده در آزمایشگاه بین‌المللی فیزیک دارای مقدار کمتری نسبت به نتایج تونل باد yard دریایی واشنگتن بود.
در سال 1923 آزمایشگاه بین‌المللی فیزیک شروع به انجام یکسری آزمایش مقایسه‌ای روی دو مدل ارشیپ در تعداد زیادی از تونلهای باد دنیا انجام داد. نتایج بدست آمده از تونلهای باد ایالت متحده دارای 50 درصد اختلاف نسبت به نتیجه میانگین بود. علت این اختلافها وجود تفاوت در میزان توربولانس تونلهای باد مختلف بود.
این دو مثال نشاندهنده تاثیر اغتشاش در تونل باد بود ولی کشف تاثیرات خود اغتشاش کمی فدیمیتر است :
اسبرن رینولدز در مطالعات خود روی جریان درون لوله‌ها، مشاهدات اولیه خود را بدین ترتیب به ثبت رسانید : برای اعداد رینولدز پائین، جریان درون لوله آرام بوده که مطابق با قوانین هیدرودینامیک برای جریانهای دائمی یک مایع لزج است. در رینولدزهای بالا جریان چرخیده و علاوه بر حرکت مولکولهای تکی، مومنتم نیز از لایه‌ای به لایه‌ای دیگر درون سیال منتقل می‌شود در آزمایشات معینی انتقال جریان از یک رژیم به رژیم دیگر صرفنظر از سرعت، قطر لوله، لزجت و چگالی مایع در مقادیر مشخصی از اعداد رینولدز اتفاق می‌افتد. هنگامیکه جریان ورودی دارای اغتشاش باشد مقدار عدد رینولدز بحرانی به بزرگی اغتشاش بستگی خواهد داشت. توربولانس جریان ورودی ممکن است بوسیله اشیایی که نزدیک ورودی لوله قرار می‌گیرند، صفحات لانه زنبوری در لوله و یا شکل ورودی خود لوله تولید شود.
ضریب درگ لوله تابعی از توربولانس بعلاوه عدد رینولدز خواهد بود. در رنج مشخصی از اعداد رینولدز این تاثیر خیلی زیاد خواهد بود.
اطلاعات موجود در مورد تونلهای باد و در نتایج حاصل از آزمایشات انجام گرفته در تونلهای مختلف، مشخص نمود که در استاندارد نمودن تونلهای باد مقدار اغتشاش و روشهای کنترل آن در یک تونل باد نیز باید مشخص شود.
آزمایشاتی که روی یک مدل کشتی در تونل باد با اغتشاش بالا انجام گرفت ، حاکی از اینست که در این تونل باد با افزایش رینولدز، ضریب درگ کاهش می‌یابد در حالیکه در تونلهای باد با اغتشاش کم، کاهش ضریب درگ با افزایش رینولدز خیلی کمتر بوده و در بعضی مواقع با افزایش رینولدز ضریب درگ زیاد می‌شود. با اینکه تاثیر توربولانس تنها روی اجسام خاصی چشمگیر است، ولی به هر حال اهمیت شناخت مقدار توربولانس در هر تونل باد در طول آزمایش مشخص است.
نظریه مدرن در مورد نوع تاثیر توربولانس
به عنوان پیش زمینه‌‌ای برای بررسی مزایا و معایب نسبی وجود اغتشاش کم یا زیاد در تونلهای باد، لازمست که در مورد تاثیر توربولانس درکی اجمالی داشته باشیم. برخی از نظریه‌های موجود در این زمینه شامل ترکیبی از نظریات پرنتل، وان کارمن، برگر و دیگران است.
نقطه شروع این نظریات، تئوری لایه مرزی پرنتل است.
در قسمتی از میدان جریان آب یا هوا در رینولدزهای نسبتا بالا، اتلاف انرژی ناچیز بوده و بنابراین تاثیر لزجت نیز ناچیز است. البته لزجت همچنان تاثیر خود را خواهد داشت وگرنه درگ بوجود نمی‌آمد. بنابراین پرنتل فرض کرد که تاثیرات لزجت به لایه های نازک یا لایه‌‌های نزدیک به سطح جسم محدود می‌شود و با این فرضها معادلات حرکت در سیال لزج را مطرح نمود. نتیجه این فرضها، معادلاتی است که توزیع سرعت در یک لایه، ضخامت لایه یا پارامترهای معادل و اصطکاک پوستی روی سطح را در هنگامیکه توزیع فشار در طول جسم مشخص است، می‌دهد.
دو پدیده مانع از کاربرد این فرمولها برای کل لایه مرزی می‌شد. اولین پدیده جدایش بود. این پدیده زمانی اتفاق می‌افتد که فشار لایه مرزی در جریان پایین دست افزایش یافته و ذرات سیال در نزدیکی دیواره در حالیکه توسط فشار به عقب می‌افتند، با اصطکاک یا ذرات مجاور خود نیز رانده می‌شوند. هنگامیکه لایه مرزی ضخیم می‌شود تاثیر این به عقب افتادن غالب شده و در نهایت باعث برگشت جریان می‌شود. برگشت جریان نیز همانطور که در زوایای حمله بالا روی سیلندر یا ایرفویل دیده می‌شود، سبب جدایش جریان از سطح می‌گردد. شروع جدایش بوسیله معادلات پرنتل قابل پیش‌بینی است اما پیشرفت این پدیده باعث انحراف زیادی از فرضهای اولیه پرنتل در استخراج این معادلات می‌شود.
پدیده دومی که در فرضهای اساسی در نظر گرفته نشده است، شروع جریان ادی در لایه مرزی است. جریان بررسی شده توسط معادلات پرنتل جریان آرام است. مومنتم بوسیله حرکت مولکولها که تاثیرشان تابع ضریب لزجت است، از یک لایه به لایه دیگر منتقل می‌شود.
آزمایشات برگر و شاگردش هگ زیجنن نشان داد که جریان چرخشی گشته بطوریکه اغتشاش موجود در جریان تعدیل نشده و زمانیکه عددرینولدزبه مقدار بحرانی مشخصی می‌رسد، انتقال اتفاق می‌افتد. مقدار رینولدز بحرانی به میزان توربولانس جریان بستگی دارد و با افزایش توربولانس کاهش می‌یابد.
اگر شروع چرخش جریان در لایه مرزی قبل از جدایش لایه اتفاق بیفتد، جدایش را تحت تاثطر قرار می‌دهد. در حرکت ادی آشفتگی بیشتری در ذرات هوا وجود دارد و عمل راندن لایه‌های بیرونی روی لایه ‌‌های درونی نزدیک سطح جسم بزرگتر است. بنابراین هوای موجود در لایه توانایی پیشبردن جریان را در مقابل گرادیان فشار معکوس داشته و بدین ترتیب جدایش به تعویق می‌افتد. جدایش به تعویق افتاده باعث تغییرات بسیار در ضریب درگ کره و سیلندر در منطقه می‌شود. بنابراین تاثیر توربولانس در مقاومت کره همان تسریع در شروع جریان ادی در لایه مرزی خواهد بود.
لازم به ذکر است که مکانیزم تفکیک لایه مرزی آرام و تاثیر اغتشاش هنوز بطور کامل مشخص نشده است. نویسنده معتقد است که این مکانیزم ضرورتا با آنچه در پدیده جدایش می‌افتد، یکسان است و اگر هیچ نوسانی در سرعت هوا در لبه لایه مرزی وجود نداشته باشد، این تفکیک اتفاق نمی‌افتد. نوسانات مشاهده شده در سرعت دریک نقطه ثابت ممکن است به عنوان یک نشانه در نظر گرفته شود و اینکه در چه زمانی در طول لبه بیرونی لایه مرزی تغییرات سرعت اتفاق می‌افتد. تغییرات سرعت به تغییرات فشار مرتبط است و در منطقه‌ای که سرعت کاهش می‌یابد فشار افزایش خواهد یافت. بزرگی فشار به دامنه و فرکانس نوسانات سرعت بستگی داشته و با افزایش آنها افزایش می‌یابد. 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   65 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله تونل باد

تحلیل پارامتری تونل انتقال آب تحت تأثیر متغیرهای ژئومکانیکی خاک های مسیرتونل در اثر حفاری با دستگاه TBM-EPB توسط نرم افزار FLAC

اختصاصی از فی دوو تحلیل پارامتری تونل انتقال آب تحت تأثیر متغیرهای ژئومکانیکی خاک های مسیرتونل در اثر حفاری با دستگاه TBM-EPB توسط نرم افزار FLAC3D دانلود با لینک مستقیم و پر سرعت .

امروزه حفاری تونل های با بیش از دو کیلومتر توسط حفاری مکانیزه انجام می شود. تونل بلند قمرود نیز با طول تقریبا 36 کیلومتر یکی از بلندترین تونل های آبی کشور است که به روش مکانیزه حفاری می گردد. تونل در طول مسیر از قسمت های سنگی و آبرفتی عبور می کند. دستگاه مورد استفاده در مسیر آبرفتی تونل دستگاه حفاری تمام مقطع تک سپره تعادلی با فشار زمین می باشد که به TBM-EPB معروف است. با توجه به اینکه دستگاه TBM-EPB در مسیرهایی حرکت می کند که با خاک هایی با خواص ژئومکانیکی مختلفی روبرو است لیکن مدل سازی تونل و دستگاه حفاری به صورت پارامتری در نرم افزار FLAC3D انجام شده و براساس آن نمودارهای حداکثر جا به جایی قائم و افقی در سقف و دیواره تونل براساس متغیرهای زاویه اصطکاک ضریب چسبندگی و مدول الاستیسیته خاک های مختلف رسم شده است. با استفاده از این نمودارها از یک طرف واکنش تونل در مقابل خاک های مختلفی که در مسیر آبرفتی تونل قرار دارد مورد بررسی قرار داده شده و از طرفی محدوده مجاز جابجایی های تونل در اثر حفاری با دستگاه مکانیزه TBM-EPB مشخص شده است.

 

سال انتشار: 1392

تعداد صفحات: 10

فرمت فایل: pdf


دانلود با لینک مستقیم


تحلیل پارامتری تونل انتقال آب تحت تأثیر متغیرهای ژئومکانیکی خاک های مسیرتونل در اثر حفاری با دستگاه TBM-EPB توسط نرم افزار FLAC3D

بررسی عددی رفتار لرزه ای تونل قطارهای شهری واقع در خاک های روانگرا

اختصاصی از فی دوو بررسی عددی رفتار لرزه ای تونل قطارهای شهری واقع در خاک های روانگرا دانلود با لینک مستقیم و پر سرعت .

سازه های زیرزمینی یکی از مهم ترین نیازهای شهرنشینی مدرن بوده که بررسی و تحلیل رفتار آن ها در مقابل بارگذاری دینامیکی مانند امواج زلزله، امری ضروری می باشد. روانگرایی به عنوان یکی از پیامدهای زلزله، همواره یکی از نگرانی های اصلی مهندسین ژئوتکنیک در پروژه های مختلف بوده است. هنگامی که زلزله باعث روانگرایی خاک می شود، تنش مؤثر خاک کاهش می یابد که این امر کاهش مقاومت برشی آن را به دنبال خواهد داشت. اگر لایه ی خاک روانگرا در نزدیکی سطح زمین قرار داشته باشد امکان وقوع تغییرشکل های بزرگ وجود دارد. طبیعتاً تونل هایی که در چنین لایه ای ساخته می شوند تحت تأثیر پدیده روانگرایی قرار خواهند گرفت. در حال حاضر مطالعات زیادی در مورد آثار بارگذاری زلزله روی نیروها و جابجایی هایی که در سازه زیرزمینی ایجاد می شود، انجام شده است در حالی که تحقیقات کمی در زمینه ی پاسخ لرزه ای این سازه ها در خاک هایی که قابلیت روانگرایی دارند، وجود دارد. در این مقاله با شبیه سازی عددی تولید اضافه فشار آب حفره ای در اثر اعمال بار دینامیکی، رفتار سازه ی مدفونی که داخل این خاک قرار گرفته است بررسی می شود. در این راستا از نرم افزار تفاضل محدود FLAC3D برای مدلسازی توده ی خاک و سازه ی تونل استفاده شده است. مدل رفتاری استفاده شده در این تحقیق، مدل فین نام دارد که توانایی شبیه سازی تغییرات فشار آب حفره ای را دارد. نتایج به دست آمده حاکی از این است که اضافه فشار آب حفره ای ایجاد شده در خاک اطراف تونل، باعث بالازدگی قابل توجه در تونل می شود. همچنین با بررسی آثار پارامتر زاویه اصطکاک، این نتیجه حاصل شده است که افزایش این زاویه باعث کاهش اضافه فشار آب حفره ای ایجاد شده و کاهش میزان بالازدگی، خواهد شد.

 

سال انتشار: 1394

تعداد صفحات: 8

فرمت فایل: pdf


دانلود با لینک مستقیم


بررسی عددی رفتار لرزه ای تونل قطارهای شهری واقع در خاک های روانگرا