فی دوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی دوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پروژه مدل سازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع. doc

اختصاصی از فی دوو پروژه مدل سازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع. doc دانلود با لینک مستقیم و پر سرعت .

پروژه مدل سازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع. doc


پروژه مدل سازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع. doc

 

 

 

 

 

 

 

نوع فایل: word

قابل ویرایش 143 صفحه

 

چکیده:

در سالهای اخیر، مسایل جدی کیفیت توان در ارتباط با افت ولتاژهای ایجاد شده توسط تجهیزات و مشتریان، مطرح شده است، که بدلیل شدت استفاده از تجهیزات الکترونیکی حساس در فرآیند اتوماسیون است. وقتی که دامنه و مدت افت ولتاژ، از آستانه حساسیت تجهیزات مشتریان فراتر رود ، ممکن است این تجهیزات درست کار نکند، و موجب توقف تولید و هزینه ی قابل توجه مربوطه گردد. بنابراین فهم ویژگیهای افت ولتاژها در پایانه های تجهیزات لازم است. افت ولتاژها عمدتاً بوسیله خطاهای متقارن یا نامتقارن در سیستمهای انتقال یا توزیع ایجاد می شود. خطاها در سیستمهای توزیع معمولاً تنها باعث افت ولتاژهایی در باسهای مشتریان محلی می شود. تعداد و ویژگیهای افت ولتاژها که بعنوان عملکرد افت ولتاژها در باسهای مشتریان شناخته می شود، ممکن است با یکدیگر و با توجه به مکان اصلی خطاها فرق کند. تفاوت در عملکرد افت ولتاژها  یعنی، دامنه و بویژه نسبت زاویه فاز، نتیجه انتشار افت ولتاژها از مکانهای اصلی خطا به باسهای دیگر است. انتشار افت ولتاژها از طریق اتصالات متنوع ترانسفورماتورها، منجر به عملکرد متفاوت افت ولتاژها در طرف ثانویه ترانسفورماتورها می شود. معمولاً، انتشار افت ولتاژ بصورت جریان یافتن افت ولتاژها از سطح ولتاژ بالاتر به سطح ولتاژ پایین تر تعریف می شود. بواسطه امپدانس ترانسفورماتور کاهنده، انتشار در جهت معکوس، چشمگیر نخواهد بود. عملکرد افت ولتاژها در باسهای مشتریان را با مونیتورینگ یا اطلاعات آماری می توان ارزیابی کرد. هر چند ممکن است این عملکرد در پایانه های تجهیزات، بواسطه اتصالات سیم پیچهای ترانسفورماتور مورد استفاده در ورودی کارخانه، دوباره تغییر کند. بنابراین، لازم است بصورت ویژه انتشار افت ولتاژ از باسها به تاسیسات کارخانه از طریق اتصالات متفاوت ترانسفورماتور سرویس دهنده، مورد مطالعه قرار گیرد. این پایان نامه با طبقه بندی انواع گروههای برداری ترانسفورماتور و اتصالات آن و همچنین دسته بندی خطاهای متقارن و نامتقارن به هفت گروه، نحوه انتشار این گروهها را از طریق ترانسفورماتورها با مدلسازی و شبیه سازی انواع اتصالات سیم پیچها بررسی می کند و در نهایت نتایج را ارایه می نماید و این بررسی در شبکه تست چهارده باس IEEE برای چند مورد تایید می شود.

 

مقدمه:

یکی از ضعیفترین عناصر نرم افزارهای مدرن شبیه سازی، مدل ترانسفورماتور است و فرصتهای زیادی برای بهبود شبیه سازی رفتارهای پیچیده ترانسفورماتور وجود دارد، که شامل اشباع هسته مغناطیسی، وابستگی فرکانسی، تزویج خازنی، و تصحیح ساختاری هسته و ساختار سیم پیچی است.

مدل ترانسفورماتور بواسطه فراوانی طراحیهای هسته و همچنین به دلیل اینکه برخی از پارامترهای ترانسفورماتور هم غیر خطی و هم به فرکانس وابسته اند، می تواند بسیار پیچیده باشد. ویژگیهای فیزیکی رفتاری که، با در نظر گرفتن فرکانس، لازم است برای یک مدل ترانسفورماتور بدرستی ارائه شود عبارتند از:

پیکربندیهای هسته و سیم پیچی،

اندوکتانسهای خودی و متقابل بین سیم پیچها،

شارهای نشتی،

اثر پوستی و اثر مجاورت در سیم پیچها،

اشباع هسته مغناطیسی،

هیسترزیس و تلفات جریان گردابی در هسته،

و اثرات خازنی.

مدلهایی با پیچیدگیهای مختلف در نرم افزارهای گذرا برای شبیه سازی رفتار گذرای ترانسفورماتورها، پیاده سازی شده است. این فصل یک مرور بر مدلهای ترانسفورماتور، برای شبیه سازی پدیده های گذرا که کمتر از رزونانس سیم پیچ اولیه (چند کیلو هرتز) است، می باشد، که شامل فرورزونانس، اکثر گذراهای کلیدزنی، و اثر متقابل هارمونیکها است.

 

فهرست مطالب:

1-1 مقدمه

1-2 مدلهای ترانسفورماتور

1-2-1 معرفی مدل ماتریسی Matrix Representation (BCTRAN Model)

1-2-2 مدل ترانسفورماتور قابل اشباع  Saturable Transformer Component (STC Model)

1-2-3 مدلهای بر مبنای توپولوژی Topology-Based Models

2- مدلسازی ترانسفورماتور

2-1 مقدمه

2-2 ترانسفورماتور ایده آل

2-3 معادلات شار نشتی

2-4 معادلات ولتاژ

2-5 ارائه مدار معادل

2-6 مدلسازی ترانسفورماتور دو سیم پیچه

2-7 شرایط پایانه ها (ترمینالها)

2-8 وارد کردن اشباع هسته به شبیه سازی

2-8-1 روشهای وارد کردن اثرات اشباع هسته

2-8-2 شبیه سازی رابطه بین  و 

2-9 منحنی اشباع با مقادیر لحظهای

2-9-1 استخراج منحنی مغناطیس کنندگی مدار باز با مقادیر لحظهای

2-9-2 بدست آوردن ضرایب معادله انتگرالی

2-10 خطای استفاده از منحنی مدار باز با مقادیر RMS

2-11 شبیه سازی ترانسفورماتور پنج ستونی در حوزه زمان

2-11-1 حل عددی معادلات دیفرانسیل

2-12 روشهای آزموده شده برای حل همزمان معادلات دیفرانسیل

3- انواع خطاهای نامتقارن و اثر اتصالات ترانسفورماتور روی آن

3-1 مقدمه

3-2 دامنه افت ولتاژ

3-3 مدت افت ولتاژ

3-4 اتصالات سیم پیچی ترانس

3-5 انتقال افت ولتاژها از طریق ترانسفورماتور

3-5-1- خطای تکفاز، بار با اتصال ستاره، بدون ترانسفورماتور

3-5-2- خطای تکفاز، بار با اتصال مثلث، بدون ترانسفورماتور

3-5-3- خطای تکفاز، بار با اتصال ستاره، ترانسفورماتور نوع دوم

3-5-4- خطای تکفاز، بار با اتصال مثلث، ترانسفورماتور نوع دوم

3-5-5- خطای تکفاز، بار با اتصال ستاره، ترانسفورماتور نوع سوم

3-5-6- خطای تکفاز، بار با اتصال مثلث، ترانسفورماتور نوع سوم

3-5-7- خطای دو فاز به هم، بار با اتصال ستاره، بدون ترانسفورماتور

3-5-8- خطای دو فاز به هم، بار با اتصال مثلث، بدون ترانسفورماتور

3-5-9- خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع دوم

3-5-10- خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع دوم

3-5-11- خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع سوم

3-5-12- خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع سوم

3-5-13- خطاهای دو فاز به زمین

3-6 جمعبندی انواع خطاها

3-7 خطای TYPE A ، ترانسفورماتور DD

3-8 خطای TYPE B ، ترانسفورماتور DD

3-9 خطای TYPE C ، ترانسفورماتور DD

3-10 خطاهای TYPE D و TYPE F و TYPE G ، ترانسفورماتور DD

3-11 خطای TYPE E ، ترانسفورماتور DD

3-12 خطاهای نامتقارن ، ترانسفورماتور YY

3-13 خطاهای نامتقارن ، ترانسفورماتور YGYG

3-14 خطای TYPE A ، ترانسفورماتور DY

3-15 خطای TYPE B ، ترانسفورماتور DY

3-16 خطای TYPE C ، ترانسفورماتور DY

3-17 خطای TYPE D ، ترانسفورماتور DY

3-18 خطای TYPE E ، ترانسفورماتور DY

3-19 خطای TYPE F ، ترانسفورماتور DY

3-20 خطای TYPE G ، ترانسفورماتور DY

3-21 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای TYPE A شبیه سازی با PSCA

شبیه سازی با برنامه نوشته شده

3-22 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای TYPE B شبیه سازی با PSCA

شبیه سازی با برنامه نوشته شده

3-23 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای TYPE C شبیه سازی با PSCA

شبیه سازی با برنامه نوشته شده

3-24 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای TYPE D شبیه سازی با PSCA

شبیه سازی با برنامه نوشته شده

3-25 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای  TYPE E شبیه سازی با PSCA

شبیه سازی با برنامه نوشته شده

3-26 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای TYPE F شبیه سازی با PSCAD

شبیه سازی با برنامه نوشته شده

3-27 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای TYPE G شبیه سازی با PSCA

شبیه سازی با برنامه نوشته شده

3-28 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای TYPE D در باس 5

3-29 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای TYPE G در باس 5

3-30 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای TYPE A در باس 5

4- نتیجه گیری و پیشنهادات

مراجع

 

فهرست شکل ها:

شکل (1-1) مدل ماتریسی ترانسفورماتور با اضافه کردن اثر هسته

شکل (1-2) ) مدار ستاره ی مدل ترانسفورماتور قابل اشباع

شکل (1-3) ترانسفورماتور زرهی تک فاز

شکل (1-4) مدار الکتریکی معادل شکل (1-3)

شکل (2-1) ترانسفورماتور

شکل (2-2) ترانسفورماتور ایده ال

شکل (2-3) ترانسفورماتور ایده ال بل بار

شکل (2-4) ترانسفورماتور با مولفه های شار پیوندی و نشتی

شکل (2-5) مدرا معادل ترانسفورماتور

شکل (2-6) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه

شکل (2-7) ترکیب RL موازی

شکل (2-8) ترکیب RC موازی

شکل (2-9) منحنی مغناطیس کنندگی مدار باز ترانسفورماتور

شکل (2-10) رابطه بین   و             

شکل (2-11) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه با اثر اشباع

شکل (2-12) رابطه بین  و  

شکل (2-13) رابطه بین  و  

شکل (2-14) منحنی مدار باز با مقادیر  rms

شکل (2-15) شار پیوندی متناظر شکل (2-14) سینوسی

شکل (2-16) جریان لحظه ای متناظر با تحریک ولتاژ سینوسی

شکل (2-17) منحنی مدار باز با مقادیر لحظه ای

شکل (2-18) منحنی مدار باز با مقادیر rms

شکل (2-19) میزان خطای استفاده از منحنی rms 

شکل (2-20) میزان خطای استفاده از منحنی لحظه ای

شکل (2-21) مدار معادل مغناطیسی ترانسفورماتور سه فاز سه ستونه

شکل (2-22) مدار معادل الکتریکی ترانسفورماتور سه فاز سه ستونه

شکل (2-23) مدار معادل مغناطیسی ترانسفورماتور سه فاز پنج ستونه

شکل (2-24) ترانسفورماتور پنج ستونه

شکل (2-25) انتگرالگیری در یک استپ زمانی به روش اولر

شکل (2-26) انتگرالگیری در یک استپ زمانی به روش trapezoidal

شکل (3-1) دیاگرام فازوری خطاها

شکل (3-2) شکل موج ولتاژ Vab

شکل (3-3)  شکل موج ولتاژ Vbc

شکل (3-4) شکل موج ولتاژ Vca

شکل (3-5)  شکل موج ولتاژ Vab

شکل (3-6) شکل موج جریان iA

شکل (3-7) شکل موج جریان iB

شکل (3-8) شکل موج جریان iA

شکل (3-9) شکل موج جریان iA

شکل (3-10)  شکل موجهای ولتاژ Va , Vb , Vc

شکل (3-11)  شکل موجهای ولتاژ Va , Vb , Vc

شکل (3-12)  شکل موجهای جریان ia , ib , ic

شکل (3-13)  شکل موجهای ولتاژ Va , Vb , Vc

شکل (3-14)  شکل موجهای ولتاژ Va , Vb , Vc

شکل (3-15)  شکل موجهای جریان , iB iA

شکل (3-16)  شکل موج جریان iA

شکل (3-16)  شکل موج جریان iB

شکل (3-17)  شکل موج جریان iC

شکل (3-18)  شکل موجهای ولتاژ Va , Vb , Vc

شکل (3-19)  شکل موجهای جریان ia , ib , ic

شکل (3-20)  شکل موجهای ولتاژ Va , Vb , Vc

شکل (3-21)  شکل موجهای جریان ia , ib , ic

شکل (3-22)  شکل موجهای جریان ia , ib , ic

شکل (3-23) شکل موج ولتاژ Va

شکل (3-24) شکل موج ولتاژ Vb

شکل (3-25) شکل موج ولتاژ Vc

شکل (3-26) شکل موج جریانiA

شکل (3-27) شکل موج جریان iB

شکل (3-28) شکل موج جریان iC

شکل (3-29) شکل موج جریانiA

شکل (3-30) شکل موج جریان iB

شکل (3-31) موج جریان iC

شکل (3-32) شکل موج جریانiA

شکل (3-33) شکل موج جریان iB

شکل (3-34) شکل موج جریان iC

شکل (3-35) شکل موج ولتاژ Va

شکل (3-36) شکل موج ولتاژ Vb

شکل (3-37) شکل موج ولتاژ Vc

شکل (3-38) شکل موج جریانiA

شکل (3-39) شکل موج جریان iB

شکل (3-40) شکل موج جریان iC

شکل (3-41) شکل موج جریانiA

شکل (3-42) شکل موج جریان iB

شکل (3-43) شکل موج جریان iC

شکل (3-44) شکل موج ولتاژ Va

شکل (3-45) شکل موج ولتاژ Vb

شکل (3-46) شکل موج ولتاژ Vc

شکل (3-47) شکل موج جریانiA

شکل (3-48) شکل موج جریان iB

شکل (3-49) شکل موج جریان iC

شکل (3-50) شکل موج جریانiA

شکل (3-51) شکل موج جریان iB

شکل (3-52) شکل موج جریان iC

شکل (3-53) شکل موج ولتاژ Va

شکل (3-54) شکل موج ولتاژ Vb

شکل (3-55) شکل موج ولتاژ Vc

شکل (3-56) شکل موج جریانiA

شکل (3-57) شکل موج جریان iB

شکل (3-58) شکل موج جریان iC

شکل (3-59) شکل موج جریانiA

شکل (3-60)  شکل موج جریان iB

شکل (3-61) شکل موج جریان iC

شکل (3-62) شکل موج ولتاژ Va

شکل (3-63) شکل موج ولتاژ Vb

شکل (3-64) شکل موج ولتاژ Vc

شکل (3-65) شکل موج جریانiA

شکل (3-66) شکل موج جریان iB

شکل (3-67) شکل موج جریان iC

شکل (3-68) شکل موج جریانiA

شکل (3-69) شکل موج جریان iB

شکل (3-70) شکل موج جریان iC

شکل (3-71) شکل موج ولتاژ Va

شکل (3-72)  شکل موج ولتاژ Vb

شکل (3-73) شکل موج ولتاژ Vc

شکل (3-74) شکل موج جریانiA

شکل (3-75) شکل موج جریان iB

شکل (3-76) شکل موج جریان iC

شکل (3-77) شکل موج جریانiA

شکل (3-78) شکل موج جریان iB

شکل (3-79) شکل موج جریان iC

شکل (3-80) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-81) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-82) شکل موجهای جریان) (kV با PSCAD

شکل (3-83) شکل موجهای جریان) (kV با PSCAD

شکل (3-84) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-85) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-86) شکل موجهای جریان با برنامه نوشته شده

شکل (3-87) شکل موجهای جریان با برنامه نوشته شده

شکل (3-88) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-89) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-90) شکل موجهای جریان) (kV با PSCAD

شکل (3-91) شکل موجهای جریان) (kV با PSCAD

شکل (3-92) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-93) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-94) شکل موجهای جریان با برنامه نوشته شده

شکل (3-95) شکل موجهای جریان با برنامه نوشته شده

شکل (3-96) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-97) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-98) شکل موجهای جریان) (kV با PSCAD

شکل (3-99) شکل موجهای جریان) (kV با PSCAD

شکل (3-100) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-101) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-102) شکل موجهای جریان با برنامه نوشته شده

شکل (3-103) شکل موجهای جریان با برنامه نوشته شده

شکل (3-104) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-105) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-106) شکل موجهای جریان) (kV با PSCAD

شکل (3-107) شکل موجهای جریان) (kV با PSCAD

شکل (3-108) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-109) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-110) شکل موجهای جریان با برنامه نوشته شده

شکل (3-111) شکل موجهای جریان با برنامه نوشته شده

شکل (3-112) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-113) شکل موجهای ولتاژ) (kV با PSCAD

 شکل (3-114) شکل موجهای جریان) (kV با PSCAD

شکل (3-115) شکل موجهای جریان) (kV با PSCAD

شکل (3-116) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-117) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-118) شکل موجهای جریان با برنامه نوشته شده

شکل (3-119) شکل موجهای جریان با برنامه نوشته شده

شکل (3-120) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-121) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-122) شکل موجهای جریان) (kV با PSCAD

شکل (3-123) شکل موجهای جریان) (kV با PSCAD

شکل (3-124) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-125) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-126) شکل موجهای جریان با برنامه نوشته شده

شکل (3-127) شکل موجهای جریان با برنامه نوشته شده

شکل (3-128) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-129) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-130) شکل موجهای جریان) (

دانلود با لینک مستقیم


پروژه مدل سازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع. doc

تحقیق در مورد تاریخچه شبیه سازی

اختصاصی از فی دوو تحقیق در مورد تاریخچه شبیه سازی دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد تاریخچه شبیه سازی


تحقیق در مورد تاریخچه شبیه سازی

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه8

بخشی از فهرست مطالب

تاریخچه کلونینگ درجهان

 

انواع شبیه سازی

 

کاربردها و اهمیت شبیه سازی

 

کلیات فرآیند شبیه سازی

 

شبیه سازی حیوانات اهلی موقعیت کنونی و روند آینده

 

 

 

تاریخچه کلونینگ درجهان

 

شبیه سازی به معنی تولید مثل به روش غیرجنسی از افراد انتخاب شده به گونه ای است که نسل ایجاد شده از آنها از نظر محتوای ژنتیکی کاملا شبیه همتای خود باشد.

 

اساس شبیه سازی ، انتقال هسته سلول (پیکری یا بنیادی) به تخمک بدون هسته می باشد.فرآیند انتقال هسته شامل 2قسمت اساسی است: -1خروج هسته از تخمک -2جایگزین کردن آن با سلول دهنده.

 

این تکنیک برای اولین بار در سال 1938 میلادی از سوی هانس اسپمن انجام شد. مشکلات بسیاری در راه شبیه سازی پستانداران وجود داشت تا آن که محققان اسکاتلندی توانستند گوسفند کلون شده به نام دالی (Dolly) را تولید کنند. به این ترتیب آنچه در ذهن محققان و دانشمندان غیر ممکن می نمود ، امکان پذیر شد و شبیه سازی آرام آرام مسیر ترقی و پیشرفت خود را طی کرد.

 

 

 

انواع شبیه سازی

 

2 نوع شبیه سازی وجود دارد:

 

شبیه سازی تولید مثلی که باهدف بقای نسل و دارا شدن فرزندی همتای والد (از نظر محتوای ژنتیکی) صورت می گیرد. در این روش از سلول سوماتیک یا پیکری برای انتقال هسته استفاده می شود.

 

شبیه سازی درمانی که هدف اصلی آن به دست آوردن سلول بنیادی جنینی است که بتوان از آن در درمان ناتوانی ها و بیماری ها (بخصوص بیماری های تحلیل برنده) استفاده کرد. از آنجا که سلول بنیادی (سلولهای تمایز نیافته ای که با شرایط مناسب دارای توانایی تمایز به انواع سلولهای بالغ هستند) چند ظرفیتی است ، به نظر می رسد شبیه سازی با استفاده از چنین سلولهایی برای به دست آوردن بافتها یا اندام های دچار مشکل ، بتواند چشم اندازی روشن از آینده ای زیباتر برای این بیماری فراهم کند.

 

اگرچه در ابتدای امر ، ورود شبیه سازی درمانی از نوع پیوند عضو از گونه ای دیگر ، به قلمرو پزشکی غیرممکن می نمود ، اکنون این روش به اندازه ای قدرتمند می نماید که خارج از مرزهایی که پیش از این طب را محدود کرده بود ، فعالیت می کند و امیدوار است که خدمت ارزنده ای را به بشریت تقدیم کند.

 


دانلود با لینک مستقیم


تحقیق در مورد تاریخچه شبیه سازی

کاربرد مدل Mike3 در شبیه سازی جریان گل آلود در مخازن سدها (مطالعه موردی : مخزن سد سفید رود)

اختصاصی از فی دوو کاربرد مدل Mike3 در شبیه سازی جریان گل آلود در مخازن سدها (مطالعه موردی : مخزن سد سفید رود) دانلود با لینک مستقیم و پر سرعت .

کاربرد مدل Mike3 در شبیه سازی جریان گل آلود در مخازن سدها (مطالعه موردی : مخزن سد سفید رود)


کاربرد مدل Mike3 در شبیه سازی جریان گل آلود در مخازن سدها (مطالعه موردی : مخزن سد سفید رود)

عنوان مقاله :کاربرد مدل Mike3 در شبیه سازی جریان گل آلود در مخازن سدها (مطالعه موردی : مخزن سد سفید رود)

محل انتشار: دهمین کنگره بین المللی مهندسی عمران تبریز


تعداد صفحات:10

 

نوع فایل :  pdf

 


دانلود با لینک مستقیم


کاربرد مدل Mike3 در شبیه سازی جریان گل آلود در مخازن سدها (مطالعه موردی : مخزن سد سفید رود)

مقاله شبیه سازی شده با STATCOM با عنوان سیستم انتقال قدرت هوشمند با استفاده از ادوات FACTS

اختصاصی از فی دوو مقاله شبیه سازی شده با STATCOM با عنوان سیستم انتقال قدرت هوشمند با استفاده از ادوات FACTS دانلود با لینک مستقیم و پر سرعت .

مقاله شبیه سازی شده با STATCOM با عنوان سیستم انتقال قدرت هوشمند با استفاده از ادوات FACTS


مقاله شبیه سازی شده با STATCOM با عنوان سیستم انتقال قدرت هوشمند با استفاده از ادوات FACTS

 

 

 

 

 

 

 

 

 

سیستم های انتقال AC انعطاف پذیر که به FACTS  معروف می باشند مفهوم و ایده جدیدی است که برای تقویت کنترل پذیری و توسعه ظرفیت انتقال شبکه ها، بکارگیری و استفاده از کنترل کننده ها و ادوات الکترونیک قدرت را توصیه و تشویق می نمایند. در واقع سیستم های FACTS قادر هستند که پارامترها و مشخصه های خطوط انتقال مانند امپدانس سری، امپدانس شانت، زاویه فاز که بعنوان محدودیت اصلی بر سر راه افزایش ظرفیت شبکه عمل می نمایند، کنترل کنند.

ایده اساسی که پشت مفهوم FACTS وجود دارد توانا نمودن سیستم انتقال از طریق فعال نمودن عناصر و اجزاء آن می باشد. در واقع FACTS دارای نقش اساسی در افزایش انعطاف پذیری انتقال توان و امنیت پایداری دینامیک سیستم های قدرت می باشد.
کنترل کننده های FACTS با بکارگیری کنترل کننده های پر سرعت الکترونیک قدرت امکانات و قابلیت های زیر را برای سیستم قدرت ایجاد می نمایند. 
  •  کنترل فلوی توان اکتیو بقسمی که بتواند انتقال و مقدار آن را در مسیرهای دلخواهی کنترل نماید. 
  •  کنترل بارگیری خطوط انتقال تا نزدیکی های ظرفیت حرارتی آنها بقسمی که در عین اینکه از حداکثر ظرفیت خطوط استفاده میگردد اما مانع از اضافه بار آنها میشود. این امر باعث میشود که بواسطه افزایش توانائی انتقال توان بین نواحی، بتوان حاشیه رزرو تولید در سیستم را کاهش داد. 
  •  میرائی نوسانات توان که در صورت عدم میرائی میتوانند باعث صدمه دیدن تجهیزات و محدود نمودن ظرفیت انتقال خطوط گردند. 
  •  جلوگیری از توسعه و گسترش حوادث و خروج پی در پی تجهیزات از طریق محدود نمودن اثر خطاها و معیوب شدن تجهیزات
تحت مدیریت و هدایت موسسه RPRI کاربرد FACTS در دست مطالعه می باشد و تعداد زیادی از کنترل کننده های FACTS هم اکنون ارزیابی و آزمایش شده اند در حالیکه تعداد دیگری از نظر مفهومی بررسی و مطالعه گردیده ولیکن هنوز طراحی و ساخته نشده اند.
کنترل کننده های FACTS که هم اکنون ساخته شده و بکار گرفته شده اند، موارد کاربرد آنها بشرح زیر می باشند
TCSC&ASC با کاربردهای زیر 
  •  کنترل امپدانس خطوط با جبران سازی سری آنها 
  •  کنترل توان عبوری خطوط
  • میرائی نوسانات توان و پدیده SSR
SVC & ASVC با کاربردهای زیر 
  •  کنترل راکتور و یا خازنهای شانت با استفاده از جبران سازی شانت
  •  کنترل ولتاژ 
  •  بهبود پایداری دینامیکی
 
کنترل کننده های FACTS که هنوز ساخته نشده و بکار گرفته نشده اند بهمراه موارد کاربرد آنها بشرح زیر می باشند
STATCON 
  • جبران سازهای جدید توان راکتیو براساس کاربرد تریستورهای GTO 
  • جبران سازی شانت 
  •  کنترل ولتاژ 
  •  بهبود پایداری دینامیکی 
  • قرار است در سیستم قدرت TVA و در پست Sullivan نصب گردد.
UPFC 
  • مجهز به عملکرد تعداد زیادی از انواع FACTS می باشد 
  • جبران سازی سری و شانت 
  • کنترل ولتاژ شینها و فلوی توان خطوط 
  • بهبود پایداری دینامیک 
  •  موسسه های EPRI و WAPA در تحقیقات UPFC همکاری دارند
PAR 
  • جبران سازی سری و کنترل زاویه فاز خطوط 
  •  کنترل فلوی توان خطوط
  • بهبود پایداری دینامیکی 
  •  مؤسسه های EPRI و WAPA نیز بر روی PAR فعالیت و تحقیقات می نمایند.
SMES 
  • جبران سازی شانت
  •  کنترل ولتاژ شین 
  •  بهبود پایداری دینامیک
Dynamic Brake 
  • جبران سازی سری
  • بهبود پایداری دینامیکی
ASI 
  • جبران سازی سری
  •  بهبود پایداری دینامیکی
باید توجه داشت که فناوری FACTS یک کنترل کننده الکترونیک قدرت تکی نمی باشد بلکه مجموعه ای از کنترل کننده ها است که میتوانند بصورت تکی و یا مجتمع با یکدیگر برای کنترل پارامترهای سیستم قدرت استفاده شوند. چون کنترل کننده های FACTS همگی دارای یک فناوری ساخت مشابه می باشند بنابراین تولید آنها صرفا" تفاوت فناوری در اندازه و بزرگی آنها می باشد.
 
عنوان مقاله:
Smart Power Transmission System Using FACTS Device
 
نویسندگان مقاله:
Qazi Waqar Ali, Azzam Ul Asar
 
این مقاله در ژورنال IJAPE چاپ شده است.
 

دانلود با لینک مستقیم


مقاله شبیه سازی شده با STATCOM با عنوان سیستم انتقال قدرت هوشمند با استفاده از ادوات FACTS

مقاله تحلیل تجربی و شبیه سازی شکست پره‌های تیتانیومی کمپرسور نیروگاه گازی هسا

اختصاصی از فی دوو مقاله تحلیل تجربی و شبیه سازی شکست پره‌های تیتانیومی کمپرسور نیروگاه گازی هسا دانلود با لینک مستقیم و پر سرعت .

مقاله تحلیل تجربی و شبیه سازی شکست پره‌های تیتانیومی کمپرسور نیروگاه گازی هسا


مقاله تحلیل تجربی و شبیه سازی شکست پره‌های تیتانیومی کمپرسور نیروگاه گازی هسا

فرمت فایل word: (لینک دانلود پایین صفحه) تعداد صفحات : 22 صفحه

 

 

 

 

 

 

 

چکیده :

در این مقاله، مکانیزم تخریب پره های کمپرسور توربین‌های نیروگاه گازی هسا مورد بررسی قرار گرفته است. موارد متعدد شکست زودهنگام در ریشه پره های مرحله نهم ناحیه پرفشار کمپرسور این توربین‌ها اتفاق افتاده است. به منظور بررسی علل و مکانیزم تخریب، مشخصات متالورژیکی و مکانیکی ایرفویل و ریشه پره‌ها و سطوح شکست آن‌ها بررسی شد. همچنین به کمک نرم‌افزار المان محدود ANSYS شرایط تنشی حاکم بر پره‌ها در شرایط کاری پایا مورد تحلیل قرار گرفت. نتایج آزمایشات انجام شده نشان داد که ریز ساختار ریشه و ایرفویل پره ها، سختی و خواص کششی، تماما" مطابق با مشخصات ارائه شده در استانداردQ  4928AMS می‌باشد. نتایج این آزمایشات، هیچ گونه عیوب مکانیکی و متالورژیکی در مواد پره ها را نشان نمی‌دهد.آزمایشات شکست نگاری، جوانه زنی چندگانه ترک ها را نشان می دهد. در میکرو شکست نگاری ریشه پره ها، ذرات ریز اکسید تیتانیوم در سطوح شکست و در دهانه ترک ها مشاهده شد. تحلیل المان محدود نیز نشان داد که حداکثر تمرکز تنش، در لبه ناحیه تماس ریشه پره با دیسک می‌باشد که توافق خوبی با محل جوانه‌زنی ترک‌ها دارد. از بین عوامل مختلف تمرکز تنش، تماس نامناسب پره و دیسک در ناحیه ریشه به عنوان عامل اصلی ایجاد سایش در ریشه پره و شکست زودهنگام آن تعیین گردید.

 

مقدمه:

                   در سال‌های اخیر چند مورد شکست در کمپرسور نیروگاه گازی هسا در اصفهان رخ داده است. سه مورد از موارد فوق مربوط به مرحله نهم ناحیه پرفشار کمپرسور بوده که دو مورد اخیر آن در تاریخ‌های  24/12/1384 و 30/2/1385 بوقوع پیوسته است. هر دو تخریب از ناحیه ریشه پره ها و به طور کاملا" مشابه اتفاق افتاده است. با توجه به ضررهای مالی زیادی که انهدام این پره ها برای نیروگاه و شبکه برق کشور دارد آنالیز تخریب این پره ها بسیار مهم به نظر می‌رسد. انهدام‌های متعددی به خاطر جوانه زنی و رشد ترک های خستگی در پره های کمپرسور مشاهده شده است [1]. روش‌هایی چون اعمال تنش پسماند و پوشش دهی برای افزایش استحکام خستگی این قطعات  استفاده می‌شود [3-2].

خستگی سایشی آسیبی است که از حرکت های نسبی موضعی با دامنه کمتر از 50 میکرون بین قطعات تحت بار نوسانی اتفاق می افتد و باعث جوانه زنی ترک های زودرس و انهدام می شود. بسیاری از قطعات مورد استفاده در توربین‌های گازی و یا کمپرسور، بسیار حساس به آسیب و تشکیل ترک در نواحی اجزاء تماسی خود هستند که این به خاطر نیروی گریز از مرکز و لرزش های نوسانی تحریک می شوند. این پدیده خستگی سایشی شناخته می شود [8-4]. تخریب خستگی سایشی در ابتدا از سطح نمونه و نزدیک سطح نمونه با آسیب هایی که ناشی از سایش است آغاز می‌گردد. این آسیب ها باعث تغییر شکل پلاستیک شدید، توزیع فیلم‌ها یا اکسیدها در سطح و انتقال مواد می‌گردد. توزیع فیلم‌های سطحی یا اکسید های ناشی شده از سایش به شدت می توانند انهدام خستگی را تسریع کنند زیرا با افزایش تماس مستقیم فلز با فلز و ایجاد میکروجوش ها، نیروهای برشی موضعی بالاتر می رود و از طرف دیگر، ذرات اکسیدی می توانند به عنوان جسم سوم ساینده در ناحیه تماس عمل کرده و باعث ترغیب سایش بین دو سطح و جوانه زنی ترک‌ها شوند [8-7]. کاهش لرزش‌ها و همچنین کاهش ضریب اصطکاک بین دو سطح تماس می‌توانند در کاهش جوانه زنی و رشد موقت آنها دخیل باشند [9].

هدف از کار حاضر، تعیین مکانیزم تخریب پره‌های کمپرسور نیروگاه گازی هسا می‌باشد. بدین منظور از آزمایش‌های مختلف متالورژیکی و مکانیکی و نیز تحلیل المان محدود شرایط کاری پره ها استفاده شده است.

 


دانلود با لینک مستقیم


مقاله تحلیل تجربی و شبیه سازی شکست پره‌های تیتانیومی کمپرسور نیروگاه گازی هسا