فی دوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی دوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق درمورد مقایسه ترانسفورماتورهای نوع خشک و روغنی

اختصاصی از فی دوو دانلود تحقیق درمورد مقایسه ترانسفورماتورهای نوع خشک و روغنی دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق درمورد مقایسه ترانسفورماتورهای نوع خشک و روغنی


دانلود تحقیق درمورد مقایسه ترانسفورماتورهای نوع خشک و روغنی

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 5

 

مقایسه ترانسفورماتورهای نوع خشک و روغنی

  • مقدمه:

ترانسفورماتورهای شبکه توزیع عمدتاً از نوع ترانسفورماتورهای روغنی (Oil immersed type) ، و بعضاً از نوع خشک (Dry type) می باشند تفاوت اصلی این دو نوع ترانسفورماتور در استقامت الکتریکی و حرارتی عایقهای بکار رفته در آنهاست. ترانسفورماتورهای خشک بر اساس استاندارد بین المللی IEC 60726 می توانند با سیستم عایقی کلاسهای A,E,B,F,H,C طراحی و ساخته شوند ترانسفورماتورهیا خشک مورد بررسی در این مقاله دارای عایقهایی با کلاس حرارتی F و دمای  می باشند که مقدار مجاز دمای متوسط سیم پیچها  است به بیان دیگر جهش حرارتی مجاز سیم پیچها در محیط استاندارد برابر 100k خواهد بود. ] 1[ در حالی که عایقهای ترانسفورماتورهای روغنی با کلاس حرارتی A دمای قابل تحمل کمتری داشته و لذا مقدار مجاز دمای متوسط سیم پیچها در محیط استاندارد  می باشد. [2]

بدیهی است که این دو نوع ترانسفورماتور از دیدگاههای مختلف دارای مزایا و معایبی نسبت به یکدیگر می باشند که از جمله مهمترین مزایای ترانسفورماتور خشک ایمن بودن آن در برابر انفجار و آتش سوزی بوده و در مقابل عدم امکان تعمیر و بازسازی سیم پیچهای رزینی(Cast resin) عیب آن به شمار می رود.

همچنین ترانسفورماتورهای خشک در صورت نصب در فضای آزاد (outdoor) معمولاً درون یک محفظه (Enclosure) قرار می گیرند که می تواند سه حالت داشته باشد: بدون تنفس (Sealed) یا با تنفس (totally enclosed) و یا به صورت با گردش هوا (Enclosed) را امکان پذیر سازد. ولی برای نصب در فضای بسته (Indoor) و در صورت عدم وجود شرایط خاص نیازی به حفاظ نخواهد بود که بصورت (Non-enclosed) می باشند.

در این مقاله سعی شده تا بر اساس مدارک فنی برای محاسبه و طراحی ترانسفورماتورهای توزیع روغنی و خشک موجود در شرکت ایران ترانسفو[3] مقایسه ای از لحاظ ابعاد و اوزان بین این دو نوع ترانسفورماتور(با مشخصات یکسان) بدست آید. استاندارد مورد نظر برای ترانسفورماتورهای روغنی IEC76 و برای خشک کدرن IEC60726 می باشد.

  • شرح مقاله و روش تحقیق:

برای انجام این تحقیق از دانش فنی موجود در شرکت ایران ترانسفو برای محاسبه و طراحی ترانسفورماتورهای توزیع روغنی و خشک استفاده شده است. بررسی بر روی دو نمونه ترانسفورماتور سه فاز 1600kVA، 800kVA پارامترهایی که برای هر دو نوع ترانسفورماتور خشک و روغنی یکسان فرض شده عبارتند از:

1-وان (kVA) 2- نسبت تبدیل و پله های تنظیم ولتاژ 3- گروه اتصال 4- درصد امپدانس اتصال کوتاه (%) 5- فرکانس (Hz) 6- تلفات بی باری گارانتی شده (kw) 7- تلفات بار گارانتی شده (kw) 8- شرایط محیط نصب (مطابق استاندارد IEC) 9- محل نصب (Indoor)

لازم به ذکر است که برای محاسبه و طراحی این ترانسفورماتورها مقادیر تلفات ترانسفورماتورهای محاسبه شده خشک(بصورت نرمال) مبنا قرار داده شده و با در نظر گرفتن این مقادیر گارانتی برای تلفات بار و تلفات بی باری، ترانسفورماتورهای روغنی نیز طراحی گردید.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود تحقیق درمورد مقایسه ترانسفورماتورهای نوع خشک و روغنی

پروژه مدل سازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع. doc

اختصاصی از فی دوو پروژه مدل سازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع. doc دانلود با لینک مستقیم و پر سرعت .

پروژه مدل سازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع. doc


پروژه مدل سازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع. doc

 

 

 

 

 

 

 

نوع فایل: word

قابل ویرایش 143 صفحه

 

چکیده:

در سالهای اخیر، مسایل جدی کیفیت توان در ارتباط با افت ولتاژهای ایجاد شده توسط تجهیزات و مشتریان، مطرح شده است، که بدلیل شدت استفاده از تجهیزات الکترونیکی حساس در فرآیند اتوماسیون است. وقتی که دامنه و مدت افت ولتاژ، از آستانه حساسیت تجهیزات مشتریان فراتر رود ، ممکن است این تجهیزات درست کار نکند، و موجب توقف تولید و هزینه ی قابل توجه مربوطه گردد. بنابراین فهم ویژگیهای افت ولتاژها در پایانه های تجهیزات لازم است. افت ولتاژها عمدتاً بوسیله خطاهای متقارن یا نامتقارن در سیستمهای انتقال یا توزیع ایجاد می شود. خطاها در سیستمهای توزیع معمولاً تنها باعث افت ولتاژهایی در باسهای مشتریان محلی می شود. تعداد و ویژگیهای افت ولتاژها که بعنوان عملکرد افت ولتاژها در باسهای مشتریان شناخته می شود، ممکن است با یکدیگر و با توجه به مکان اصلی خطاها فرق کند. تفاوت در عملکرد افت ولتاژها  یعنی، دامنه و بویژه نسبت زاویه فاز، نتیجه انتشار افت ولتاژها از مکانهای اصلی خطا به باسهای دیگر است. انتشار افت ولتاژها از طریق اتصالات متنوع ترانسفورماتورها، منجر به عملکرد متفاوت افت ولتاژها در طرف ثانویه ترانسفورماتورها می شود. معمولاً، انتشار افت ولتاژ بصورت جریان یافتن افت ولتاژها از سطح ولتاژ بالاتر به سطح ولتاژ پایین تر تعریف می شود. بواسطه امپدانس ترانسفورماتور کاهنده، انتشار در جهت معکوس، چشمگیر نخواهد بود. عملکرد افت ولتاژها در باسهای مشتریان را با مونیتورینگ یا اطلاعات آماری می توان ارزیابی کرد. هر چند ممکن است این عملکرد در پایانه های تجهیزات، بواسطه اتصالات سیم پیچهای ترانسفورماتور مورد استفاده در ورودی کارخانه، دوباره تغییر کند. بنابراین، لازم است بصورت ویژه انتشار افت ولتاژ از باسها به تاسیسات کارخانه از طریق اتصالات متفاوت ترانسفورماتور سرویس دهنده، مورد مطالعه قرار گیرد. این پایان نامه با طبقه بندی انواع گروههای برداری ترانسفورماتور و اتصالات آن و همچنین دسته بندی خطاهای متقارن و نامتقارن به هفت گروه، نحوه انتشار این گروهها را از طریق ترانسفورماتورها با مدلسازی و شبیه سازی انواع اتصالات سیم پیچها بررسی می کند و در نهایت نتایج را ارایه می نماید و این بررسی در شبکه تست چهارده باس IEEE برای چند مورد تایید می شود.

 

مقدمه:

یکی از ضعیفترین عناصر نرم افزارهای مدرن شبیه سازی، مدل ترانسفورماتور است و فرصتهای زیادی برای بهبود شبیه سازی رفتارهای پیچیده ترانسفورماتور وجود دارد، که شامل اشباع هسته مغناطیسی، وابستگی فرکانسی، تزویج خازنی، و تصحیح ساختاری هسته و ساختار سیم پیچی است.

مدل ترانسفورماتور بواسطه فراوانی طراحیهای هسته و همچنین به دلیل اینکه برخی از پارامترهای ترانسفورماتور هم غیر خطی و هم به فرکانس وابسته اند، می تواند بسیار پیچیده باشد. ویژگیهای فیزیکی رفتاری که، با در نظر گرفتن فرکانس، لازم است برای یک مدل ترانسفورماتور بدرستی ارائه شود عبارتند از:

پیکربندیهای هسته و سیم پیچی،

اندوکتانسهای خودی و متقابل بین سیم پیچها،

شارهای نشتی،

اثر پوستی و اثر مجاورت در سیم پیچها،

اشباع هسته مغناطیسی،

هیسترزیس و تلفات جریان گردابی در هسته،

و اثرات خازنی.

مدلهایی با پیچیدگیهای مختلف در نرم افزارهای گذرا برای شبیه سازی رفتار گذرای ترانسفورماتورها، پیاده سازی شده است. این فصل یک مرور بر مدلهای ترانسفورماتور، برای شبیه سازی پدیده های گذرا که کمتر از رزونانس سیم پیچ اولیه (چند کیلو هرتز) است، می باشد، که شامل فرورزونانس، اکثر گذراهای کلیدزنی، و اثر متقابل هارمونیکها است.

 

فهرست مطالب:

1-1 مقدمه

1-2 مدلهای ترانسفورماتور

1-2-1 معرفی مدل ماتریسی Matrix Representation (BCTRAN Model)

1-2-2 مدل ترانسفورماتور قابل اشباع  Saturable Transformer Component (STC Model)

1-2-3 مدلهای بر مبنای توپولوژی Topology-Based Models

2- مدلسازی ترانسفورماتور

2-1 مقدمه

2-2 ترانسفورماتور ایده آل

2-3 معادلات شار نشتی

2-4 معادلات ولتاژ

2-5 ارائه مدار معادل

2-6 مدلسازی ترانسفورماتور دو سیم پیچه

2-7 شرایط پایانه ها (ترمینالها)

2-8 وارد کردن اشباع هسته به شبیه سازی

2-8-1 روشهای وارد کردن اثرات اشباع هسته

2-8-2 شبیه سازی رابطه بین  و 

2-9 منحنی اشباع با مقادیر لحظهای

2-9-1 استخراج منحنی مغناطیس کنندگی مدار باز با مقادیر لحظهای

2-9-2 بدست آوردن ضرایب معادله انتگرالی

2-10 خطای استفاده از منحنی مدار باز با مقادیر RMS

2-11 شبیه سازی ترانسفورماتور پنج ستونی در حوزه زمان

2-11-1 حل عددی معادلات دیفرانسیل

2-12 روشهای آزموده شده برای حل همزمان معادلات دیفرانسیل

3- انواع خطاهای نامتقارن و اثر اتصالات ترانسفورماتور روی آن

3-1 مقدمه

3-2 دامنه افت ولتاژ

3-3 مدت افت ولتاژ

3-4 اتصالات سیم پیچی ترانس

3-5 انتقال افت ولتاژها از طریق ترانسفورماتور

3-5-1- خطای تکفاز، بار با اتصال ستاره، بدون ترانسفورماتور

3-5-2- خطای تکفاز، بار با اتصال مثلث، بدون ترانسفورماتور

3-5-3- خطای تکفاز، بار با اتصال ستاره، ترانسفورماتور نوع دوم

3-5-4- خطای تکفاز، بار با اتصال مثلث، ترانسفورماتور نوع دوم

3-5-5- خطای تکفاز، بار با اتصال ستاره، ترانسفورماتور نوع سوم

3-5-6- خطای تکفاز، بار با اتصال مثلث، ترانسفورماتور نوع سوم

3-5-7- خطای دو فاز به هم، بار با اتصال ستاره، بدون ترانسفورماتور

3-5-8- خطای دو فاز به هم، بار با اتصال مثلث، بدون ترانسفورماتور

3-5-9- خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع دوم

3-5-10- خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع دوم

3-5-11- خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع سوم

3-5-12- خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع سوم

3-5-13- خطاهای دو فاز به زمین

3-6 جمعبندی انواع خطاها

3-7 خطای TYPE A ، ترانسفورماتور DD

3-8 خطای TYPE B ، ترانسفورماتور DD

3-9 خطای TYPE C ، ترانسفورماتور DD

3-10 خطاهای TYPE D و TYPE F و TYPE G ، ترانسفورماتور DD

3-11 خطای TYPE E ، ترانسفورماتور DD

3-12 خطاهای نامتقارن ، ترانسفورماتور YY

3-13 خطاهای نامتقارن ، ترانسفورماتور YGYG

3-14 خطای TYPE A ، ترانسفورماتور DY

3-15 خطای TYPE B ، ترانسفورماتور DY

3-16 خطای TYPE C ، ترانسفورماتور DY

3-17 خطای TYPE D ، ترانسفورماتور DY

3-18 خطای TYPE E ، ترانسفورماتور DY

3-19 خطای TYPE F ، ترانسفورماتور DY

3-20 خطای TYPE G ، ترانسفورماتور DY

3-21 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای TYPE A شبیه سازی با PSCA

شبیه سازی با برنامه نوشته شده

3-22 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای TYPE B شبیه سازی با PSCA

شبیه سازی با برنامه نوشته شده

3-23 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای TYPE C شبیه سازی با PSCA

شبیه سازی با برنامه نوشته شده

3-24 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای TYPE D شبیه سازی با PSCA

شبیه سازی با برنامه نوشته شده

3-25 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای  TYPE E شبیه سازی با PSCA

شبیه سازی با برنامه نوشته شده

3-26 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای TYPE F شبیه سازی با PSCAD

شبیه سازی با برنامه نوشته شده

3-27 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای TYPE G شبیه سازی با PSCA

شبیه سازی با برنامه نوشته شده

3-28 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای TYPE D در باس 5

3-29 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای TYPE G در باس 5

3-30 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای TYPE A در باس 5

4- نتیجه گیری و پیشنهادات

مراجع

 

فهرست شکل ها:

شکل (1-1) مدل ماتریسی ترانسفورماتور با اضافه کردن اثر هسته

شکل (1-2) ) مدار ستاره ی مدل ترانسفورماتور قابل اشباع

شکل (1-3) ترانسفورماتور زرهی تک فاز

شکل (1-4) مدار الکتریکی معادل شکل (1-3)

شکل (2-1) ترانسفورماتور

شکل (2-2) ترانسفورماتور ایده ال

شکل (2-3) ترانسفورماتور ایده ال بل بار

شکل (2-4) ترانسفورماتور با مولفه های شار پیوندی و نشتی

شکل (2-5) مدرا معادل ترانسفورماتور

شکل (2-6) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه

شکل (2-7) ترکیب RL موازی

شکل (2-8) ترکیب RC موازی

شکل (2-9) منحنی مغناطیس کنندگی مدار باز ترانسفورماتور

شکل (2-10) رابطه بین   و             

شکل (2-11) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه با اثر اشباع

شکل (2-12) رابطه بین  و  

شکل (2-13) رابطه بین  و  

شکل (2-14) منحنی مدار باز با مقادیر  rms

شکل (2-15) شار پیوندی متناظر شکل (2-14) سینوسی

شکل (2-16) جریان لحظه ای متناظر با تحریک ولتاژ سینوسی

شکل (2-17) منحنی مدار باز با مقادیر لحظه ای

شکل (2-18) منحنی مدار باز با مقادیر rms

شکل (2-19) میزان خطای استفاده از منحنی rms 

شکل (2-20) میزان خطای استفاده از منحنی لحظه ای

شکل (2-21) مدار معادل مغناطیسی ترانسفورماتور سه فاز سه ستونه

شکل (2-22) مدار معادل الکتریکی ترانسفورماتور سه فاز سه ستونه

شکل (2-23) مدار معادل مغناطیسی ترانسفورماتور سه فاز پنج ستونه

شکل (2-24) ترانسفورماتور پنج ستونه

شکل (2-25) انتگرالگیری در یک استپ زمانی به روش اولر

شکل (2-26) انتگرالگیری در یک استپ زمانی به روش trapezoidal

شکل (3-1) دیاگرام فازوری خطاها

شکل (3-2) شکل موج ولتاژ Vab

شکل (3-3)  شکل موج ولتاژ Vbc

شکل (3-4) شکل موج ولتاژ Vca

شکل (3-5)  شکل موج ولتاژ Vab

شکل (3-6) شکل موج جریان iA

شکل (3-7) شکل موج جریان iB

شکل (3-8) شکل موج جریان iA

شکل (3-9) شکل موج جریان iA

شکل (3-10)  شکل موجهای ولتاژ Va , Vb , Vc

شکل (3-11)  شکل موجهای ولتاژ Va , Vb , Vc

شکل (3-12)  شکل موجهای جریان ia , ib , ic

شکل (3-13)  شکل موجهای ولتاژ Va , Vb , Vc

شکل (3-14)  شکل موجهای ولتاژ Va , Vb , Vc

شکل (3-15)  شکل موجهای جریان , iB iA

شکل (3-16)  شکل موج جریان iA

شکل (3-16)  شکل موج جریان iB

شکل (3-17)  شکل موج جریان iC

شکل (3-18)  شکل موجهای ولتاژ Va , Vb , Vc

شکل (3-19)  شکل موجهای جریان ia , ib , ic

شکل (3-20)  شکل موجهای ولتاژ Va , Vb , Vc

شکل (3-21)  شکل موجهای جریان ia , ib , ic

شکل (3-22)  شکل موجهای جریان ia , ib , ic

شکل (3-23) شکل موج ولتاژ Va

شکل (3-24) شکل موج ولتاژ Vb

شکل (3-25) شکل موج ولتاژ Vc

شکل (3-26) شکل موج جریانiA

شکل (3-27) شکل موج جریان iB

شکل (3-28) شکل موج جریان iC

شکل (3-29) شکل موج جریانiA

شکل (3-30) شکل موج جریان iB

شکل (3-31) موج جریان iC

شکل (3-32) شکل موج جریانiA

شکل (3-33) شکل موج جریان iB

شکل (3-34) شکل موج جریان iC

شکل (3-35) شکل موج ولتاژ Va

شکل (3-36) شکل موج ولتاژ Vb

شکل (3-37) شکل موج ولتاژ Vc

شکل (3-38) شکل موج جریانiA

شکل (3-39) شکل موج جریان iB

شکل (3-40) شکل موج جریان iC

شکل (3-41) شکل موج جریانiA

شکل (3-42) شکل موج جریان iB

شکل (3-43) شکل موج جریان iC

شکل (3-44) شکل موج ولتاژ Va

شکل (3-45) شکل موج ولتاژ Vb

شکل (3-46) شکل موج ولتاژ Vc

شکل (3-47) شکل موج جریانiA

شکل (3-48) شکل موج جریان iB

شکل (3-49) شکل موج جریان iC

شکل (3-50) شکل موج جریانiA

شکل (3-51) شکل موج جریان iB

شکل (3-52) شکل موج جریان iC

شکل (3-53) شکل موج ولتاژ Va

شکل (3-54) شکل موج ولتاژ Vb

شکل (3-55) شکل موج ولتاژ Vc

شکل (3-56) شکل موج جریانiA

شکل (3-57) شکل موج جریان iB

شکل (3-58) شکل موج جریان iC

شکل (3-59) شکل موج جریانiA

شکل (3-60)  شکل موج جریان iB

شکل (3-61) شکل موج جریان iC

شکل (3-62) شکل موج ولتاژ Va

شکل (3-63) شکل موج ولتاژ Vb

شکل (3-64) شکل موج ولتاژ Vc

شکل (3-65) شکل موج جریانiA

شکل (3-66) شکل موج جریان iB

شکل (3-67) شکل موج جریان iC

شکل (3-68) شکل موج جریانiA

شکل (3-69) شکل موج جریان iB

شکل (3-70) شکل موج جریان iC

شکل (3-71) شکل موج ولتاژ Va

شکل (3-72)  شکل موج ولتاژ Vb

شکل (3-73) شکل موج ولتاژ Vc

شکل (3-74) شکل موج جریانiA

شکل (3-75) شکل موج جریان iB

شکل (3-76) شکل موج جریان iC

شکل (3-77) شکل موج جریانiA

شکل (3-78) شکل موج جریان iB

شکل (3-79) شکل موج جریان iC

شکل (3-80) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-81) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-82) شکل موجهای جریان) (kV با PSCAD

شکل (3-83) شکل موجهای جریان) (kV با PSCAD

شکل (3-84) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-85) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-86) شکل موجهای جریان با برنامه نوشته شده

شکل (3-87) شکل موجهای جریان با برنامه نوشته شده

شکل (3-88) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-89) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-90) شکل موجهای جریان) (kV با PSCAD

شکل (3-91) شکل موجهای جریان) (kV با PSCAD

شکل (3-92) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-93) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-94) شکل موجهای جریان با برنامه نوشته شده

شکل (3-95) شکل موجهای جریان با برنامه نوشته شده

شکل (3-96) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-97) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-98) شکل موجهای جریان) (kV با PSCAD

شکل (3-99) شکل موجهای جریان) (kV با PSCAD

شکل (3-100) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-101) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-102) شکل موجهای جریان با برنامه نوشته شده

شکل (3-103) شکل موجهای جریان با برنامه نوشته شده

شکل (3-104) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-105) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-106) شکل موجهای جریان) (kV با PSCAD

شکل (3-107) شکل موجهای جریان) (kV با PSCAD

شکل (3-108) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-109) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-110) شکل موجهای جریان با برنامه نوشته شده

شکل (3-111) شکل موجهای جریان با برنامه نوشته شده

شکل (3-112) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-113) شکل موجهای ولتاژ) (kV با PSCAD

 شکل (3-114) شکل موجهای جریان) (kV با PSCAD

شکل (3-115) شکل موجهای جریان) (kV با PSCAD

شکل (3-116) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-117) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-118) شکل موجهای جریان با برنامه نوشته شده

شکل (3-119) شکل موجهای جریان با برنامه نوشته شده

شکل (3-120) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-121) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-122) شکل موجهای جریان) (kV با PSCAD

شکل (3-123) شکل موجهای جریان) (kV با PSCAD

شکل (3-124) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-125) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-126) شکل موجهای جریان با برنامه نوشته شده

شکل (3-127) شکل موجهای جریان با برنامه نوشته شده

شکل (3-128) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-129) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-130) شکل موجهای جریان) (

دانلود با لینک مستقیم


پروژه مدل سازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع. doc

تحقیق در مورد ترانسفورماتور سه فاز

اختصاصی از فی دوو تحقیق در مورد ترانسفورماتور سه فاز دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد ترانسفورماتور سه فاز


تحقیق در مورد ترانسفورماتور سه فاز

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه20

ترانسفورماتور سه فاز

مقدمه

قسمت اعظم انرژی الکتریکی مورد نیاز انسان در تمام کشورهای جهان ، توسط مراکز تولید مانند نیروگاههای بخاری ، آبی و هسته‌ای تولید می‌شود. این مراکز دارای توربینها و آلترناتیوهای سه فاز هستند و ولتاژی که بوسیله ژنراتورها تولید می‌شود، باید تا میزانی که مقرون به صرفه باشد جهت انتقال بالا برده شود. گاهی چندین مرکز تولید بوسیله شبکه‌ای به هم مرتبط می‌شوند تا انرژی الکتریکی مورد نیاز را بطور مداوم و به مقدار کافی در شهرها و نواحی مختلف توزیع کنند.


 





در محلهای توزیع برای اینکه ولتاژ قابل استفاده برای مصارف عمومی و کارخانجات باشد، باید ولتاژ پایین آورده شود. این افزایش و کاهش ولتاژ توسط ترانسفورماتور انجام می‌شود. بدیهی است توزیع انرژی بین تمام مصرف کننده‌های یک شهر از مرکز توزیع اصلی امکانپذیر نیست و مستلزم هزینه و افت ولتاژ زیادی خواهد بود. لذا هر مرکز اصلی به چندین مرکز یا پست کوچکتر (پستهای داخل شهری) و هر پست نیز به چندین محل توزیع کوچکتر (پست منطقه‌ای) تقسیم می‌شود. هر کدام از این مراکز به نوبه خود از ترانسهای توزیع و تبدیل ولتاژ استفاده می‌کنند.

بطور کلی در خانواده و توزیع انرژی الکتریکی ، ترانسفورماتورها از ارکان و اعضای اصلی هستند و اهمیت آنها کمتر از خطوط انتقال و یا مولدهای نیرو نیست. خوشبختانه به دلیل وجود حداقل وسایل دینامیکی در آنها کمتر با مشکل و آسیب پذیری روبرو هستند. مسلما‌ این به آن معنی نیست که می‌توان از توجه به حفاظتها و سرویس و نگهداری آنها غفلت کرد. در این مقاله نخست مختصری از تئوری و تعاریفی از انواع ترانسفورماتورها بیان می‌شود، سپس نقش ترانسفورماتورها در شبکه تولید و توزیع نیرو و در نهایت شرحی در مورد سرویس و تعمیر ترانسها ارائه می‌شود.

تئوری و تعاریفی از ترانسفورماتورها

ترانسفورماتورها به زبان ساده و شکل اولیه وسیله‌ای است که تشکیل شده از دو مجموعه سیم پیچ اولیه و ثانویه که در میدان مغناطیسی و اطراف ورقه‌هایی از آهن مخصوص به نام هسته ترانسفورماتور قرار می‌گیرند. مقره‌ها یا بوشینگها یا ایزولاتورها و بالاخره ظرف یا محفظه ترانسفورماتور.
کار ترانسفورماتورها بر اساس انتقال انرژی الکتریکی از سیستمی با یک ولتاژ و جریان معین به سیستم دیگری با ولتاژ و جریان دیگر است. به عبارت دیگر ترانسفورماتور دستگاهی است استاتیکی که در یک میدان مغناطیسی جریان و فشار الکتریکی را بین دو سیم پیچ یا بیشتر با همان فرکانس و تغییر اندازه یکسان منتقل می‌کند.

انواع ترانسفورماتورها

سازندگان و استانداردها در کشورهای مختلف هر یک به نحوی ترانسفورماتورها را تقسیم بندی کرده و تعاریفی برای درجه بندی آنها ارائه داده‌اند. برخی ترانسها را بنا بر موارد و ترتیب بهره برداری آنها متفاوت شناخته‌اند، مانند ترانسهای انتقال قدرت ، اتو ترانس و یا ترانسهای تقویتی و گروهی از ترانسها را به غیر از ترانسفورماتور اینسترومنتی(ترانس جریان و ولتاژ) ، ترانس قدرت می‌نامند و اصطلاحا ترانس قدرت را آنهایی می‌دانند که در سمت ثانویه آنها فشار الکتریکی تولید می‌شود.


دانلود با لینک مستقیم


تحقیق در مورد ترانسفورماتور سه فاز

دانلود تحقیق بررسی امکان کاهش تلفات انتقال با نصب ترانسفورماتور جابجا کننده فاز

اختصاصی از فی دوو دانلود تحقیق بررسی امکان کاهش تلفات انتقال با نصب ترانسفورماتور جابجا کننده فاز دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق بررسی امکان کاهش تلفات انتقال با نصب ترانسفورماتور جابجا کننده فاز


دانلود تحقیق بررسی امکان کاهش تلفات انتقال با نصب ترانسفورماتور جابجا کننده فاز

چکیده:
هدف این مقاله نشان دادن توانایی ترانسفورماتور جابجا کننده فاز (Phase Shifting Transformer)PST در کاهش تلفات سیستم قدرت است. در این راستا ابتدا تواناییهای PST با دیگر ادواتی که توانایی کنترل سیلان قدرت را دارند، مقایسه می شود. سپس شبکه برق منطقه ای تهران و خطوط رابط آن با نواحی مجاور به عنوان شبکه نمونه مطالعه می شود و محل نصب مناسب PST در جهت کاهش تلفات این شبکه مشخص می گردد. شبیه سازیها نشان می دهد که PST نه فقط تلفات برق منطقه ای تهران را کم می کند بلکه توانایی کاهش تلفات کل شبکه سراسری را نیز دارد.


1- مقدمه
هدف بهره برداران از سیستم قدرت این است که در حالت دائم توان درخواستی مصرف کننده را تحت ولتاژ  ثابت و فرکانس معین تأمین نمایند. از دیدگاه مسائل کنترلی، بر روی مصرف کننده نمی توان محدودیتهای زیادی اعمال نمود. در نتیجهع کنترل اصلی در شبکه برق روی تولید و انتقال است. طراحان در طراحیهای اولیه مربوط به سیستم تولید و انتقال،‌قابلیت تولید و انتقال درخواستی را مدنظر قرار می دهند. ولی با گذشت زمان تغییراتی از قبیل رشد مصرف، اتصال شبکه ها به یکدیگر و تأسیس نیروگاهها و خطوط انتقال جدید این توازن را برهم زده و محدودیتهایی را در بهره برداری از شبکه قدرت به وجود می آورد.
در شبکه های غربالی اتصال شبکه ها در کنار مزایای زیادی که دارد، دارای مشکلات عدیده ای نیز هست. از جمله این مشکلات عبور توان در مسیرهای ناخواسته در سیستم انتقال است. این مسئله می تواند موجب افزایش بار غیرمجاز و عدم بهره برداری بهینه از سیستم قدرت شود. لذا بایستی بطریقی توان عبوری از یک مسیر را کنترل نمود.
در نواحی با خطوط طولانی، مسئله فوق مشکل ساز نیست، بلکه مشکل عمده مسئله حد پایداری گذرا و افت ولتاژ غیرمجاز است. به این معنی که برای حفظ پایداری شبکه و تثبیت سطح ولتاژ مجاز، توان عبوری در سیستم انتقال باید محدود شود. درنتیجه این مشکل باعث می گردد که ظرفیت بارپذیری (Load ability) خطوط، همراه با افزایش طول خطوط، شدیداً ‌کاهش یابد.
جهت رفع نواقص فوق الذکر و افزایش بهره وری از سیستم های انتقال قدرت، راه حلهای موجود عبارتند از:
- اعمال تغییرات توپولوژیک مانند احداث خطوط جدید، تغییر قطر و تعداد هادیها در فاز و یا نصب خازن سری
- کاربرد خطوط انتقال (rect Current High Voltage Di-)HVDC
- کاربرد تجهیزات (mission System Flexible AC Trans-)FACTS
این راه حلها را باید از لحاظ:
- کنترل سیلان قدرت در حالت دائم،
- کنترل سیلان قدرت در بین دو حالت کاری متفاوت ، مثلاً‌کنترل اضافه با محتمل تجهیزات به علت خروج یکی از تجهیزات
- کنترل سیلان قدرت در حین شرایط دینامیک، گذار بررسی و مقایسه نمود[1].
موردی را که این مقاله دنبال می کند،‌مورد اول یعنی کنترل پخش بار در حالت دائم است و هدفی که از کنترل سیلان قدرت دارد این است که وضعیت موجود سیلان قدرت را در خطوط انتقال،‌ به گونه ای تغییر دهد که تلفات شبکه کاهش یابد. باتوجه به این موضوع ، آلترناتیوهای مطرح عبارتند از کاربرد خطوط انتقال HVDC یا کاربرد تجهیزات EACTS خطوط HVDC معمولاً‌ در فواصل انتقال بیش از km500 اقتصادی هستند. شبکه هدف در این مقاله، شبکه برق منطقه ای تهران و خطوط رابط آن با نواحی مجاور است. بنابراین باتوجه به فواصل مطرح در این شبکه، تنها مورد قابل قبول در جهت اهداف این مقاله،‌ استفاده از تجهیزات FACTS است.

 

 

شامل 23 صفحه word


دانلود با لینک مستقیم


دانلود تحقیق بررسی امکان کاهش تلفات انتقال با نصب ترانسفورماتور جابجا کننده فاز

دانلود گزارش کاراموزی درمورد ترانسفورماتور

اختصاصی از فی دوو دانلود گزارش کاراموزی درمورد ترانسفورماتور دانلود با لینک مستقیم و پر سرعت .

دانلود گزارش کاراموزی درمورد ترانسفورماتور


دانلود گزارش کاراموزی درمورد ترانسفورماتور

 

مشخصات این فایل
عنوان: پست kv 63/20 (ترانسفورماتورها)
فرمت فایل : word( قابل ویرایش)
تعداد صفحات: 49

این گزارش کارآموزی درمورد ترانسفورماتورها می باشد.

بخشی از تیترها به همراه مختصری از توضیحات هر تیتر از گزارش کارآموزی ترانسفورماتور

روغن های نفتالین
    در سالهای 1925 یک سری از کنسرواتورها دچار یخ زدگی در لوله های اتصال دهنده بین کنسرواتور و تانک اصلی شدند که این امر باعث جایگزینی روغنی به نام نفتالین گردید که دارای نقطه ریزش پایین برابر 40- بود. هیدروکربن های اکسیژن دار که بیشتر به صورت اسیدهای نفتیک هستند موجب خورندگی می شوند.
    روغن ترانس مرغوب تهیه شده از نفت خام پایه نفتیک، روغن ترانسی است. که محصول خالص پالایش باشد در حالی که هیچ ماده افزودنی به آن افزوده نشده باشد. مشخصات استاندارد روغن ترانس را دارا باشد و تحت تنش الکتریکی برای مدت طولانی به خوبی خواص خود را حفظ کند.
    روغن ترانسی که از نفت خام پایه پارافینیک تهیه شده باشد نمی تواند برای مدت طولانی تحت تنش الکتریکی خواص خود را طبق استانداردهای روغن ترانس حفظ نماید و به کمک مواد افزودنی آنتی اکسیدان می تواند این مشخصات را دارا شود و برای مدتی طولانی خواص خود را حفظ کند.
    علت این اختلافها در دو نوع با پایه های مختلف معلوم نیست ولی نتیجه این مکانیسم ها زودتر تجزیه شدن روغنهای پایه پارافینیک در مقایسه با روغن های پایه نفتنیک می باشد.
تفاوت اساسی در روغن با پایه نفتیک و پایه پارافینیک
    1-روغن ترانس با پایه پارافینیک گرایش بیشتری به ایجاد گاز دارند.
    2- روغن با پایه نفتنیک تمایل بیشتری برای جذب گازها دارند. (نسبت به روغن های با پایه پارافینیک).
    استقامت الکتریکی روغن با مقادیر گازهای غیرمحلول در روغن نسبت عکس دارد. (هر چه قدر مقدار گاز بیشتر شود. استقامت الکتریکی روغن کمتر خواهد شد)......(ادامه دارد)

- آشنایی با آسکارل
    پلی فنیل پلی کلراین P.C.B.S بیش از صد سال است که شناخته شده است و از سال 1929 میلادی به طریق صنعتی تولید شده و از آن زمان برای منظورهای صنعتی کاملاً متفاوت از جمله صنایع برق به کار می رود. مهمترین موارد استفاده P.C.B.S در صنایع برق روغن های عایق می باشد که در ترانسفورماتورها کاربرد دارند. روغنهای نسوز مصنوعی اولین بار در آمریکا با نام آسکارل ساخته شده سپس کشورهای دیگر آن را با نامهای مختلف عرضه کردند. مثلاً آلمان با نام کلوفن یا انگلستان با نام پیراکلر. ترکیب اصلی این روغن ها P.C.B. می باشد. این مواد نه تنها خود سرطان زا و سمی هستند بلکه در درجه حرارتهای مختلف به ترکیبات سمی خطرناک تری تبدیل می شوند. به همین دلیل از سال 1977 از رده تولید خارج شده و مصرف آنها در اکثر کشورهای صنعتی دنیا محدود و ممنوع شده است.
    اولین ترانسفورماتور با روغن آسکارل ساخت جنرال الکتریک آمریکا در سال 1933 ساخته شده و در مدار قرار گرفت روغن مزبور در صنایع به طور سنتیک تولید شده، رقیق تر از روغن های معدنی بی رنگ و بی بو بوده و در آب حل نمی شود. از روغن معدنی حدود 3 تا 4 برابر گرانتر است ولی به علت پاره ای مزایا، مثل تولید گاز غیر قابل انفجار در اثر تجریه توسط قوس الکتریکی، استقامت و ثبات حرارتی و شیمیایی خوب، اکسیده و لجن نمی شود......(ادامه دارد)

بکارگیری ترانسفورماتور با توجه به مسائل نگهداری و تعمیرات
    ترانسفورماتورهای روغنی نیاز به تعمیر و نگهداری زیادی دارد و اگر دقت شود ممکن است وجود خطا باعث گسترش به کلیه فازها گردد. ترانسفورماتورهای گازی و رزینی معمولاً احتیاج به دقت چندانی ندارند و اگر اشکال جدی در داخل عایق آنها روی ندهد سالها می تواند کار کند. ترانسفورماتورهای رزینی برای یک دوره 15 ساله طراحی می شوند و اگر اشکالی در داخل آن روی دهد تعمیر آن به راحتی عملی نمی باشد ولی در ترانس های گازی تعمیرات عملی است.
    البته قابل ذکر است که تجربه نشان داده که هر گونه تعمیر و بازسازی برای ترانسهای روغنی ساده ولی برای گازی مشکل و در نوع رزینی بسیار سخت و با امکانات خاصی عملی می باشد......(ادامه دارد)

ظرف ترانسفورماتورهای خشک
به طور کلی ظرف ترانسفورماتورها از ورقه های فولادی از جنس مناسب ساخته شده است و طوری هستند که امکان جوش الکتریکی را با شرایط عالی میسر می سازند.
ظرفها به فرم بیضی یا مستطیلی هستند و فرم انتخابی به طریقی با قسمتهای فعال باید انطباق داشته باشد تا از آنجا به وزن ها و اندازه های کوچکتر ممکن دست یافت.
ابعاد داخلی ظرف بر مبنای ابعاد قسمتهای فعال از قبیل: مدار مغناطیس، سیم پیچ ها، تعویض کننده هایی انشعاب و اتصالات با حمالهایشان تعیین می گردد.
ضمناَ باید فواصل لازم میان ایزولاتورها و خطاهای مجاز ساختمانی و محل بازی، برای جا گذاردن و یا جاسازی قسمتهای فعال در داخل ظرف در نظر گرفت.
خنک کنندگی ترانسفورماتورهای خشک
به طور کلی در مسئله خنک کنندگی دو عامل نقش اساسی دارد:
1- مصرف کردن خنک کننده ای با قدرت انتقال گرمای بیشتر از هوا مثل آب، هیدروژن و .....(ادامه دارد)

بررسی پیامدهای ناشی از تضعیف قدرت دی الکتریک مواد عایقی ترانس
اثر تضعیف مواد عایقی در 2 زمینه بررسی می گردد.
1-تأثیر در جهت تشدید شکست الکتریکی
2- تأثیر مخالت در توزیع مناسب و خطی اضافه ولتاژها در طول سیم پیچ به طور کلی شکست الکتریکی در حد فاصل بین 2 الکترود با پتانسیل متفاوت با رسیدن اختلاف پتانسیل به حدی که هاله ای از الکترونها و یونها تشکیل شود اتفاق خواهد افتاد.
مکانیسم عمل به اینگونه است که با افزایش ولتاژ که طبیعتاً افزایش شدت میزان الکتریکی را به همراه خواهد داشت. الکترونها و یونهای آزادی که در این میدان قرار دارند سرعت گرفته به حدی که از برخورد آنها با مولکولهای ماده عایقی یونهای جدید حاصل خواهند شد.
این پروسه در نقاطی که از شدت میدان الکتریکی قویتر برخوردار می باشند از جمله نقاط نزدیک به الکترودها شروع شده و یونهایی که بار الکتریکی موافق با الکترود داشته باشند به طرف الکترود دیگر رانده می شوند این عمل رانش و تمایل یونها در رسیدن به الکترود دیگر چیزی در حد افزایش قطر الکترود و نهایتاً برقراری جریان به صورت جرقه می باشد بیان فوق به طور کلی در مورد ولتاژهای مستقیم مصداق دارد ولی از آن جایی که اضافه ولتاژهای خطرناک از جمله رعد و برق شکل DC داشته و ضمناً در مورد ولتاژ متناوب نیز با پیچیدگی بیشتری مطالب فوق قابل تعمیم است. لذا مطلب به همین شکل در مورد شکست الکتریکی در داخل ترانس نیز بیان می گردد.
البته وضعیت میدانهای الکتریکی در داخل ترانس با توجه به ترتیب سیم پیچ ها نسبت به یکدیگر و همین طور نسبت به هسته و بدنه شکل بسیار پیچیده ای داشته و تا چندی قبل یک تحلیل ریاضی از وضعیت میدانهای .....(ادامه دارد)

بخشی از فهرست مطالب گزارش کارآموزی ترانسفورماتور

فصل اول: عایق بندی ترانسفورماتور 1
1-1- انواع عایق ها2
1-2- مشخصات اساسی دی الکتریک ها4
1-3- ترانسفورماتورهای خشک 5
1-4- ترانسفورماتورهای غوطه ور در روغن 7
فصل دوم: روغن در ترانسفورماتورهای عایق بندی شده با عایق های مایع10
2-1-کلاس روغن12
2-2- خواص شیمیایی روغن12
2-3- هیدروکربن ها13
2-4- روغن های پارافینی13
2-5- روغن های نفتالین14
2-6- پیر شدن روغن15
2-7- معیارهای ارزیابی روغن17
فصل سوم: آسکارل در ترانسفورماتورهای عایق بندی شده با مایع22
3-1- آشنایی با آسکارل23
3-2- خطرات آسکارل 24
3-3- نکات ایمنی برای استفاده از روغن آسکارل24
فصل چهارم: گاز SF6 در ترانسفورماتورهای عایق بندی شده به وسیله گاز26
4-1- آشنایی با گاز SF6 27
4-3- خواص فیزیکی SF628
4-4- خواص شیمیایی گاز SF629
4-5- خواص الکتریکی گاز SF6 29
4-6- استقامت دی الکتریک 29
4-7-استقامت مکانیکی30
فصل پنجم: رزین ها به عنوان ماده پر کننده تانک ترانسفورماتور 32
5-1- خواص فیزیکی رزین33
5-2- خواص شیمیایی رزین33
5-3- خواص الکتریکی رزین 33
5-4-استقامت دی الکتریک33
فصل ششم: سطوح عایقی34
فصل هفتم: بکارگیری ترانسفورماتورهای مختلف در صنعت با در نظر گرفتن
پارامترهای مختلف فنی و اقتصادی36
7-2- بکارگیری با توجه به مسائل زیست محیطی37
7-3- بکارگیری ترانسفورماتور در محیط های محدود38
7-4- بکارگیری برای توزیع هماهنگ با پیک برق38
7-6-نتیجه مقایسه39
فصل هشتم: اثرات نامطلوب ناشی از ورود رطوبت و ناخالصی ها به داخل محفظه ترانس و پیامدهای آن 40
نتایج و پیشنهادات41

 

 


دانلود با لینک مستقیم


دانلود گزارش کاراموزی درمورد ترانسفورماتور