فی دوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی دوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق کامل درمورد استارت موتورهای جت و توربینی

اختصاصی از فی دوو دانلود تحقیق کامل درمورد استارت موتورهای جت و توربینی دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کامل درمورد استارت موتورهای جت و توربینی


دانلود تحقیق کامل درمورد استارت موتورهای جت و توربینی

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 32

 

استارت موتورهای جت وتوربینی

استارت بادی

در این نوع استارت هوای کمپرس شده در مخزن اکسیژن که معمولا مایع میباشد همزمان با سوخت به داخل محفظه ی احتراق تزریق و محترق شده که باعث حرکت سریع توربینها میشود و بعد از دور خودکفایی سیکل کاری توسط خود موتور انجام میشود. متاسفانه به دلیل استفاده و کاربرد غلط از نام " استارت بادی" از آن تعابیر مختلفی میشود مانند: استارت بادی استارتی است که هوا را با سرعت به توربینها ( یا کمپرسورها) میزند و آنها را به گردش در می آورد که با تحقیق مطلع شدم که این تعبیر از استارت بادی در واقع استارتی است به نام استارت هیدرولیکی و در کل اینکه به نام بعضی از آنها زیاد توجه نکنید، فقط طریقه ی کار و عملکرد آنها را خوب به خاطر بسپارید چون زمانی برایتان لازم میشود.

ستارت الکتریکی

منبع این نوع استارت همان طور که از نامش پیداست موتور الکتریکی است. موتور الکتریکی که در این نوع موتورها استفاده میشود دارای RPM زیادی میباشد.RPM در حالت کلی به معنای تعداد دور در دقیقه میباشد و این یکایی است که برای نشان دادن دور موتورها چه پیستونی و چه توربینی به کار برده میشود. قدرت این استارت برای گرداندن کمپرسور صرف می شود تا کمپرسور هوا را به میزان لازم کمپرس کرده و به محفظه ی احتراق بفرستد. چنانچه در استارت یک موتور توربینی قدرت و سرعت کافی موجود نباشد RPM موتور در هنگام استارت کم خواهد بود و چون دور کمپرسور کم است آن مقدار که باید هوا را فشرده کند نمیکند لذا به سرعت خودکفایی نمیرسد و موتور روشن نمیشود (راه نمی افتد). برخلاف استارت موتورهای پیستونی که پس از روشن شدن موتور از مدار اتصال به فلایویل توسط اتومات استارت جدا میشود، در این نوع از استارت موتورهای توربینی استارت تا رساندن RPM موتور به اندازه ی RPM حالت خودکفایی کار میکند. این نوع استارت توان مصرفی بسیار بالایی دارد بطوریکه بر صفحات باطریها فشار بسیاری وارد میکند لذا از این استارت در موتورهای توربینی که تعداد توربین کمتری دارند استفاده میشود. از این استارت در بیشتر موتورهایی که کاربرد صنعتی دارند به عنوان بهترین استارت استفاده میشود.

استارت فشنگی

این استارت یک استوانه فشنگی شکل است که درون آن ماده ی انفجاری که ازدیاد حجم و انبساط زیادی مینماید قرار میدهند. این استارت در قسمت قبل از کمپرسور نصب میشود، مانند آنچه در شکل زیر دیده میشود. تصویر زیر یک استارت فشنگی را بطور جدا از موتور نشان میدهد.

برای روشن شدن یک موتور توربینی یقینا به یک آغازگر و راه انداز نیاز میباشد همانطور که برای روشن شدن یک موتور پیستونی نیاز است. ولی بین استارت یک موتور پیستونی و یک موتور توربینی تفاوت زیادی وجود دارد که به تعدادی از

آنها اشاره میکنم:

یک تفاوت اساسی استارت موتورهای جت با استارت موتورهای پیستونی در این است که در موتورهای پیستونی بیشترین فشار و بار وارد بر روی استارت در لحظات اول است و آن به دلیل این است که در این موتورها کافی است میل لنگ با دور متوسطی بچرخد و پیستون ها بتوانند هوا را به اندازه کمپرس کنند و موتور با قدرت خود به کار ادامه دهد. و چنانچه استارت در این موتورها خراب شود میتوان آنرا به طرق دیگر روشن کرد . یعنی استارت در این موتورها ارزش حیاتی پایینی دارد چون میتوان با هل دادن یک ماشین آنرا روشن کرد.

و اما در موتورهای توربینی استارت از اهمیت بسیار بالایی برخوردار میباشد بطوریکه به هیچ وجه نمیتوان این موتورها را بدون داشتن یک استارت بکار گرفت. نکته ی مهم اینجاست که در موتورهای جت برخلاف موتورهای پیستونی بیشترین فشار و بار بر استارت قبل از قطع جرقه، زمانی است که بار وارد بر کمپرسور افزایش میابد. تفاوت اساسی دیگر که در ظاهر خود را نشان میدهد مدت زمان استارت خوردن است.در موتورهای پیستونی مدت زمان استاندارد استارت خوردن حدود 1.8 ثانیه است و در موتورهای سرحال این مقدار کمتر نیز هست که البته در مورد موتورهای قدیمی بحث نمیکنم. این درحالی است که مقدار زمان لازم برای استارت خوردن یک موتور توربینی معمولی با قدرت نسبی hp 120 حدود 100 ثانیه است. البته این زمان در هر موتوری متفاوت است ولی موتور هر چه قدر کوچکتر باشد به زمان کمتری احتیاج دارد و برعکس.

هدف از سیستم استارت شتاب دادن به موتور است تا لحظه ای که توربین ها بتوانند قدرت کافی برای ادامه ی سیکل کاری موتور را تهیه کنند. به این نقطه از سرعت توربین ها "سرعت خودکفایی" میگویند. استارترها انواع مختلفی را دارند ولی همان طور که گفته شد هدف همه ی استارترها یکی است و آن رساندن دور موتور به سرعت خودکفایی و در موتورهای بدون توربین رساندن موتور به نقطه ی خودکفایی است. تهیه، انتخاب یا استفاده از استارت ها به عواملی بستگی دارد که در زیر به آنها اشاره کردم.
یکی زمان استارت است که در هواپیماهای جنگی بسیار مهم است و حتی پس از رسیدن موتور به دور هرزگرد درجه حرارت گازهای اگزوز بالا میرود ولی پس از اینکه دور به 40% Max رسید درجه حرارت گازهای اگزوز باید پایین بیاید، در غیر اینصورت خلبان باید موتور را خاموش کند تا اشکال آن برطرف گردد.علت بالا رفتن درجه حرارت اگزوز در حین استارت زدن عدم وجود هوای خنک کننده بخاطر کم بودن دور کمپرسور است. زمانی که استارت زده میشود شمع ها قبل از ورود سوخت به محفظه ی احتراق شروع به جرقه زدن میکنند. چون اگر مانند موتورهای پیستونی اول مخلوط هوا و سوخت وارد شود ممکن است به"Hot start" بینجامد.

Hot start استارتی است که در آن حرارت گازهای اگزوز از حد مجاز تجاوز میکند. چنانچه در زمان استارت زدن موتور روشن نشود، سوخت نسبتا زیادی (در موتورهای بزرگ) وارد محفظه ی احتراق میگردد. در اینحالت اگر دوباره استارت زده شود میتواند منجر به Hot start شود. برای جلوگیری از Hot start سیستمی کار گذاشته است که سیستم تخلیه یا Drain نامیده میشود و چنانچه موتور در استارتهای اولیه روشن نشود این سیستم سوخت داخل محفظه ی احتراق را تخلیه میکند.

عامل دیگر امکان دسترسی به نیروی محرکه ی استارت است. حتی موتورهای جت کوچک مقدار جریان الکتریسیته ی زیادی برای روشن شدن احتیاج دارند. به همین نسبت موتورهای بزرگتر نیرویی بیشتر برای روشن شدن احتیاج دارند. بعضی از استارتها از جهت نیروی محرکه خودکفا هستند. به این صورت که اکثر هواپیماهای جت انرژی لازمه استارت (دور بالای موتور) را از موتورهای جت کوچکتری که برق تولید میکنند میگیرند. یا ممکن است قدرت لازم برای استارت در یک هواپیمای چند موتوره از یک موتور که روشن است گرفته شود تا بقیه ی موتورها روشن شوند ، در چنین حالتی میتوان یکی از موتورهای هواپیما را با یکی از انواع استارتها روشن کرد سپس بقیه موتورها را با نیروی این موتور روشن کرد.

سومین عامل مواردی است از قبیل وزن مخصوص (نسبت وزن به گشتاور یا قدرت تولیدی)، سادگی، قابلیت اطمینان، قیمت و قابلیت تعمیر مجدد.

انواع استارت برای موتورهای توربینی عبارتند از:

  1. استارت الکتریکی
  2. استارت الکتریکی که بعد از استارت زدن آلترناتور شود
  3. استارت فشنگی یا استارت با سوخت جامد
  4. استارت بادی
  5. استارت با احتراق هوا و سوخت
  6. استارتر با موتور هیدرولیکی
  7. استارت دستی یا هندلی
  8. استارتر با سوخت یک پایه

چون پرداختن به توضیح تمام استارتها هم وقت گیر و هم حجیم است به اصلی ترین استارتها میپردازم و درمورد بقیه توضیح کوتاهی میدهم . چنانچه در مورد هر کدام سوال داشتید یا توضیح بیشتری خواستید آنرا در بخش نظرات بیان کنید.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود تحقیق کامل درمورد استارت موتورهای جت و توربینی

انتخاب سیستم خنک کاری توربینی گاز

اختصاصی از فی دوو انتخاب سیستم خنک کاری توربینی گاز دانلود با لینک مستقیم و پر سرعت .

انتخاب سیستم خنک کاری توربینی گاز


انتخاب سیستم خنک کاری توربینی گاز

دسته بندی : فنی مهندسی _ مکا نیک

فرمت فایل:  Image result for word doc 
حجم فایل:  (در قسمت پایین صفحه درج شده)
تعداد صفحات فایل:  114

 فروشگاه کتاب : مرجع فایل

 

 

 

 قسمتی از محتوای متن Word 

 

انتخاب سیستم خنک کاری توربینی گاز

 

 

 

این فصل اساساً توزیع و پخش انتقال جرمی و گرمایی را در کانون توجه قرار می دهده ، از آنجایی که برای خنک کاری اجزای توربو ماشینی به کار می روند ، و خواننده انتظار داد تا با اساس این رشته ها آشنا گردد .

 

شماری از کتب مفید می تواند در بررسی این اصول توصیه گردد ، همچون :

 

دینامیک سیالات ، استریتر تحلیلی از انتقال جرم و حرارت ، اکرت و دراک اصول انتقال جرم و گرما ، اینکروپا و دویت کتاب راهنمای انتقال گرما ، هارت نِت و ورُزنا انتقال جرم و گرمای همرفتی کایز تئوری لایة مرز ( شیلیختینگ و دینامیک و ترمودینامیک ) جریان سیال تراکمی             وقتی مرجعی جامع از اطلاعات در دسترس است ، نویسنده توجه خواننده را به چنین مرجعی جلب    می کند .

 

با این وجود وقتی که فرضیه ای انتشار می یابد نوسینده در خلاصه کردن آن تلاش می کند .

 

 

فهرست اصلاحات

 

a : سرعتی صوت

 

b : بعد خطی در عدد دورانی

 

A : سطح مرجع ، سطح حلقوی مسیر گازی

 

Ag : سطح بیرونی ایرفویل

 

: عدد شناوری

 

BR و M : نرخ وزش

 

CP : ظرفیت گرمایی ویژه در فشار ثابت

 

d : قطر هیدرولیک

 

e : ارتفاع اغتشاشی گرا

 

: عدد اکرت

 

FP : پارامتر جریان برای هوای خنک کاری

 

g : شتاب جاذبه

 

G : پارامتر زیری انتقال گرما

 

: عدد گراشوف

 

h : ضریب انتقال گرما

 

ht : ضریب انتقال گرمایی افزایش یافته با اغتشاش گرها

 

= نرخ شار اندازه حرکت

 

K : رسانایی گرمایی

 

Kf : رسانایی گرمایی سیال

 

L : طول مرجع

 

M : نرخ جریان جرمی

 

MC : نرخ جریانخنک کاری

 

: نرخ وزش

 

: عدد ماخ

 

N ، Rpm : سرعت روتور

 

: عدد ناسلت

 

: عدد پرانتل

 

PR : نرخ فشار کمپرسور

 

PS : فشار استاتیکی

 

Pt : فشار کل

 

Ptin : فشار ورودی کل

 

Q : نرخ انتقال گرما و نرخ انتقال انرژی

 

: شارگرمایی

 

P : فاصله اغتشاش گرها

 

r : موقعیت شعاعی

 

R : شعاع متوسط ، شعاع مشعل ، مقاومت و ثابت گاز

 

Ri : شعاع موضعی تیغه

 

RT : شعاع نوک تیغه

 

Rh : شعاع توپی تیغه

 

: عدد رینولدز بر اساس قطر هیدرولیک

 

: عدد رینوادز بر اساس L

 

: عدد دورانی

 

S : فاصله عمودی سطح

 

St : عدد استانتون

 

t : زمان

 

Tc : دمای هوای خنک کننده و همچنین دمای تخلیه کمپرسور

 

Tf : دمای سطحی لایه

 

Tg : دمای گاز

 

Tgin : دمای گاز ورودی

 

Tm : دمای فلز ، همچنین دما ی لایه ترکیب

 

Tref : دمای استاتیک محلی

 

Tu : شدت اغتشاش

 

: نوسان سرعت محوری محلی

 

Uin : سرعت گاز ورودی

 

U,V,W : جریان اصلی یا مؤلفه های سرعت جریان خنک کاری در جهات X ، Y ، Z

 

W : عرض

 

: زاویه شیب فواره لایه ای

 

: زاویه بین فواره لایه و بردارهای جریان اصلی

 

r : نسبت گرمایی ویژه

 

: ضریب حجمی انبساط گرمایی و زبری سطح

 

h: پخشندگی گردابی گرما

 

m: پخشندگی گردابی اندازه حرکت

 

: تأثیر انتقال گرما

 

: بازده گرمایی

 

: گرانروی مطلق گاز

 

: دانسیته

 

6 : محدوده تنش گسیختگی ( شکست )

 

: فرکانس دورانی

 

 

 

فهرست پارامترها

 

aw : دیواره آدیاباتیک

 

b : بالک

 

C : حنک کن

 

d : بر اساس قطر لبه حمله ( سیلندر )

 

f : لایه

 

hc : ردیف پره داغ

 

O : کلی

 

tur : توربینی

 

W : دیواره

 

: وضعیت جریان اصلی ( جریان آزاد )

 

 

خنک کاری توربین به عنوان یک فن آوری کلیدی برای پیشرفت موتورهای توربینی گازی

 

عملکرد یک موتور توربینی گازی شدیداً تحت تأثیر دمای ورودی توربینی است و افزایش عملکرد می تواند با ماکزیمم دمای ورودی مجاز توربین حاصل شود . از نقطه توقف ( معیار ) عملکرد، احتراق استوکیومتر یک با دمای ورود توربینی حوالی 2000 درجه سانتی گراد ( 3650 درجه فارنهایت ) ، یک ترمودینامیک ایده آل خواهد بود، چون کاری صرف تراکم هوای مورد نیاز محصولات رقیق تراکم نمی شود . بنا بر این رویه کنونی صنعت ، دمای ورودی توربینی را به دمای سوخت استوکیومنز یک نزدیکتر می سازد ، به ویژه برای موتورهای نظامی با این وجود دمای مجاز قطعه فلزی برای اغلب آلیاژهای پیشرفته و فرآیند های صنعتی نمی تواند فراتر از محدوده 980-930 درجه سانتی گراد     (1800-1700 درجه فارنهایت ) برود .

 

برای عملکرد مناسب در دماهای گازی بالاتر از این محدوده دمایی ، به سیستم خنک کاری با بازده بالا لازم است .

 

آوانس در خنک کاری روش مهمی برای رسیدن به دماهای بالاتر در ورودی توربینی و در حقیقت سوق دادن به عملکردی بهبود یافته و بهتر کردن توربین است . انتقال گرما بدین نحو عامل طراحی بسیار مهمی برای تمامی بخشهای یک توربین گازی مدرن به ویژه احتراق کننده ( مشعل ) و بخشهای توربینی می باشد . در شرح طراحی خنک کاری بخش داغ یادآوری این نکته لازم است که طراح توربین به طور مداوم تحت فشار مالی و حد دوام دیگر ملزومات مختلف مربوط به چیدمان داخلی اجزا می باشد . همه اینها به شدت مجموعه ای از طراحی سیستم خنک کاری را تحت تأثیر قرار       می دهند .

 

 

 

چالش های خنک کاری برای افزایش مداوم دمای گاز و نسبت فشار کمپرسور .

 

ارتقاء در موتورهای مدرن توربین گازی با بازده و توان ویژه بالا به مدد افزایش درجه حرارت کارکرد و در مجموع نسبت فشار کمپرسور سنجیده می شود . اغلب موتورهای باسیکل ساده معمول با نسبت های فشار بالاتر و تطبیق یافته با درجات گازی بالاتر می توانند به توان بالاتری برای همان اندازه و وزن و کلاً به راندمان بهتری از سوخت موتور برسند .

 

موتورها دارای کواپراتور( بهبود دهنده )منفعتی ترمودینامیکی از نسبت فشار بالای کمپرسور نمی برند.

 

آلیاژهای پیشرفته برای ایرفویل های توربین می توانند به صورت ایمن در داماهای فلزی زیر 980 درجه سانتی گراد ( 1800 درجه فارنهایت ) کار کنند و آلیاژهای مربوط به دیسک ها در دمای 700 درجه سانتی گراد ( 1300 درجه فارنهایت ) کار می کنند .

اما توربین های گازی مدرن در دماهای ورودی کار می کنند که کاملاً بالای این حدود باشند .

 

(توضیحات کامل در داخل فایل)

 

متن کامل را می توانید دانلود نمائید چون فقط تکه هایی از متن در این صفحه درج شده به صورت نمونه

ولی در فایل دانلودی بعد پرداخت، آنی فایل را دانلود نمایید.


دانلود با لینک مستقیم


انتخاب سیستم خنک کاری توربینی گاز

مقاله در مورد پمپ های آبرسانی

اختصاصی از فی دوو مقاله در مورد پمپ های آبرسانی دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد پمپ های آبرسانی


مقاله در مورد پمپ های آبرسانی

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه:12

 

  

 فهرست مطالب

 

 

 

پمپ های آبرسانی

 

پمپ ها و قانون پمپ ها
شرح قوانین حاکم بر پمپها و تئوری آنها

 

پمپ های سانتریفوژ عمودی (توربینی)

 

 

 

پمپهای گریز از مرکز ماشین هایی هستند که با استفاده از نیروی گریز از مرکز ( عکس العمل‌سیال در برابر نیروی مرکز گرا ) سیالات را جابه جا می‌کنند . در ادامه به موارد مهم در موضوع سیالات اشاره می شود .
نیروی وزن باعث می شود که اگر سیال در یک ارتفاع باشد به ارتفاع پایین تر جریان یابد . انرژی‌پتانسیل ، انرژی است که در سیال ذخیره می شود و مایع دارای فشار بالاتر انرژی پتانسیل بیشتری‌ دارد ، بنابراین سیال از سطوح با فشار بالا به سطوح با فشار پایین جریان می یابد . در صورتی که فشار دو مخزن برابر باشد یا اینکه اختلاف ارتفاع نداشته باشند سیال میان آنهاجریان نمی یابد . بنابراین در این حالت ها نیاز به استفاده از پمپ داریم . همچنین میتوان از پمپ ‌به منظور افزایش مقدار سیال جابه جاشده ، ( دبی) استفاده کرد . پس میتوان نتیجه گرفت یک پمپ با افزایش انرژی سیال آنرا جابجا می کند . در پمپ‌ های سانتریفیوژ این عمل توسط پروانه انجام می شود ، که با چرخاندن ‌سیال انرژی آن را می افزاید . سیال با عبور از ورودی پمپ وارد چشم ( مرکز ) پروانه می‌گردد و با دوران پروانه از لبه آن خارج می‌گردد . هر چه سرعت پروانه بیشتر باشد سیال سریعتر جابجامی شود . در زیر یک نمونه محفظه و پروانه نشان داده شده است .
هنگامی که سیال وارد پوسته( محفظه) می شود سرعت‌آن کاهش‌ می‌یابد . چون سرعت سیال‌کاهش می یابد فشار آن افزایش یافته و از طرف دیگر چون سیال با فشار زیاد در لبه و دور از چشمی خارج می‌گردد باعث ایجاد یک ناحیه کم فشار در چشمی شده که در اثر آن‌جریان سیال به درون چشمی امکان پذیر می‌گردد . ( اختلاف فشار ) وقتی سیال به خارج پمپاژ می شود سرعت آن افزایش می یابد این افزایش سرعت در خروجی‌ به شکل فشار بسیار زیاد و بخشی از آن در محفظه به صورت فشار نمایان می شود .
پروانه که به عنوان پیشران‌می باشد توسط یک منبع محرک بیرونی چرخانده می شود . محرک‌به شکل های مختلف الکتروموتور ، توربین و موتور با سوخت فسیلی می باشد . نیروی محرک‌توسط یک شافت به پیشران منتقل می‌گردد . محلی که شافت از محفظه پمپ خارج می شود ،‌ دچار نشتی می‌گردد برای رفع این مشکل از آب بند یا جعبه لایی استفاده می شود . در جایی که‌لایی قرار می‌گیرد ممکن است که شافت به شدت دچار ساییدگی گردد به همین دلیل باید از مواد قابل انعطاف استفاده کرد . همچنین برای جلوگیری از سایش ، از یک آستین متحرک‌ شافت استفاده می کنند . آستین به راحتی تعویض می‌گردد.
سیال از ناحیه خروجی با فشار بالا به پشت ناحیه مکش نشتی پیدا می کند . به همین جهت‌ فضای بین آنها را به حلقه های تحت‌ سایش مجهز می‌کنند حلقه سایش ‌بدنه ‌ثابت اما حلقه سایش پیشران همراه آن دوران می کند . بستن مناسب حلقه های سایش مقدار نشتی را به اندازه‌ زیادی کاهش می‌دهد .

 


دانلود با لینک مستقیم


مقاله در مورد پمپ های آبرسانی

تحقیق در مورد پمپ های توربینی

اختصاصی از فی دوو تحقیق در مورد پمپ های توربینی دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد پمپ های توربینی


تحقیق در مورد پمپ های توربینی

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه2

 

فهرست مطالب

پمپ های سانتریفوژ عمودی (توربینی)

 

این پمپها معمولا در چند طبقه ( بسته به فشار مورد نیاز )  در دو سیستم روغنی (شافت و غلافی) و بدون روغن برای چاه های عمیق به قطره های 8 تا 16 تولید می شوند

کاربردها: یکی از به صرفه ترین روشهای استخراج آب از منابع زیر زمینی در مصارف کشاورزی

 


دانلود با لینک مستقیم


تحقیق در مورد پمپ های توربینی