فایل pdf حل المسایل 4 فصل اول از کتاب هندسه دیفرانسیل مقدماتی نوشته بارت اونیل
این فایل 217 صفحه میباشد
حل کلیه سوالات فصل های 1و2و3و4.
(زبان این حل المسائل فارسی می باشد)
حل المسایل هندسه دیفرانسیل
فایل pdf حل المسایل 4 فصل اول از کتاب هندسه دیفرانسیل مقدماتی نوشته بارت اونیل
این فایل 217 صفحه میباشد
حل کلیه سوالات فصل های 1و2و3و4.
(زبان این حل المسائل فارسی می باشد)
معرفی
آزمون انتگرال از جمله آزمونهای همگرایی سری ها است که برای سریهایی با جملات نامنفی کاربرد دارد. این آزمون برای اولین بار در قرن چهاردهم توسط مدهاوا(Madhava) ریاضیدان هندی مطرح شد و بعدها توسط ریاضیدانان اروپایی چون کوشی و مک لورن گسترش پیدا کرد و به همین دلیل گاهی به عنوان آزمون کوشی-مک لورن یا آزمون انتگرال کوشی یا آزمون انتگرال مک لورن، نیز نامیده می شود.
آزمون انتگرال
اگر یک سری نا متناهی باشد و تابع تابعی نزولی و پیوسته در بازه به گونه ای باشد که و آنگاه سری و انتگرال غیر عادی , هر دو از نظر همگرایی مانند همدیگر هستند.
همچنین بیانی ساده تر از این آزمون نیز به این صورت موجود است به این ترتیب که سری نامتناهی با جملات نا منفی همگرا است اگر و تنها اگر حاصل انتگرال غیر عادی متناهی باشد. که در آن f تابعی نزولی تعریف شده در بازه است که . حال اگر انتگرال واگرا باشد انگاه سری نیز واگرا است.
می خواهیم همگرایی سری هارمونیک را با آزمون انتگرال بررسی کنیم. تابع نزولی و پیوسته در بازه است و داریم: همچنین این تابع تابعی است که برای هر n جملات سری هارمونیک را تولید می کند. پس می توان برطبق آزمون انتگرال سری هارمونیک و انتگرال غیر عادیاز نظر همگرایی مانند همدیگر هستند که در آن .
حال داریم:
پس انتگرال غیر عادی فوق واگرا است لذا بر طبق آزمون انتگرال سری هارمونیک واگرا است.
حال می خواهیم همگرایی سری بررسی کنیم. تابع را در نظر بگیرید. این تابع تابعی نزولی و پیوسته در بازه است. همچنین برای هر n طبیعی داریم: پس این تابع برای مقادیر طبیعی جملات سری را تولید می کند و داریم:
پس با بررسی شرایط آزمون انتگرال می توان گفت سری از نظر همگرایی با انتگرال غیر عادی وضعیت یکسانی دارند. که در آن t عددی در بازه است.
حال داریم:
پس انتگرال غیر عادی برابر یک مقدار عددی متناهی است و همگرا است لذا سری مورد نظر هم همانند این انتگرال همگرا است.
البته لازم به توضیح است که سری یک p-سری است که در آن p=2 است پس بدون انجام آزمون می توان گفت این سری همگرا است.
فایل ورد 26 ص
حسابیا حساب دیفرانسیل و انتگرال ریاضیات مربوط به حرکت و تغییر است.
تاریخچه
حساب دیفرانسیل و انتگرال در آغاز برای براورده کردن نیازهای دانشمندان قرن 17 ابداع شد.البته لازم به ذکر است ریشه های این علمرا میتوان تا هندسه کلاسیک یونانی میتوان ردیابی کرد
حساب دیفرانسیل و انتگرال به دانشمندان امکان می داد شیب خمها را تعریف کنند، زاویه آتشباری توپ را برای حصول بیشترین برد بدست آورند،و زمانهایی که سیارات نزدیکترین و دورترین فاصله را از هم دارند،پیش بینی کنند.
پیش از پیشرفتهای ریاضی که به کشف بزرگ آیزاک نیوتن و لایب نیتس انجامید،یوهانس کپلر منجم با بیست سال تفکر،ثبت اطلاعات،و انجام محاسباث سه قانون حرکت سیارات را کشف کرد:
قانون اول کپلر
1.هر سیاره در مداری بیضی شکل حرکث میکندکه یک کانونش در خورشید است
2.خط واصل بین خورشید و ستاره در مدتهای مساوی مساحات مساوی را طی میکنند
قانون دوم کپلر
3.مربع گردش هر سیاره به دور خورشید،متناسب است با مکعب فاصله متوسط آن سیاره از خورشید
ولی استنتاج قوانین کپلر از قوانین حرکت نیوتن با استفاده از حساب دیفرانسیل و انتگرال کار ساده ای است.
قلمرو امروزی حساب دیفرانسیل و انتگرال
امروز حساب دیفرانسیل و انتگرال در آنالیز ریاضی قلمرو واقعا گسترده ای دارد و فیزیکدانان و ریاضیدانان که اول بار این موضوع را ابداع کردند مسلما شگفت زده و شادمان می شدند اگر می دیدند که این موضوع چه انبوهی از مسائل را حل میکند.
امروزه اقتصاددانان از حساب دیفرانسیل و انتگرال برای پیش بینی گرایشهای کلی اقتصادی استفاده می کنند. اقیانوس شناسان برای فرمول بندی نظریه هایی درباره جریانهای دریایی بهره میگیرند،و هواشناسان آن را برای توصیف جریان هوای جو به کار میگیرند،دانشمندان علوم فضایی آن را برای طراحی موشکها به کار میبرند.روانشناسان از آن برای درک ثوهمات بصری استفاده می کنندو...
به طور خلاصه حساب دیفرانسیل و انتگرال علمی است که درتمام علوم امروزی کاربرد بسزایی دارد.
بزرگان این علم
این علم عمدتا کار دانشمندان قرن هفدهم اسث. از میان این دانشمندان میتوان به رنه دکات ،کاوالیری،فرما
و جیمز گرگوری اشاره کرد.
پیشرفت حساب دیفرانسیل و انتگرال در قرن 18 با سرعت زیادی ادامه یافت، در زمره مهمترین افرادی که در این زمینه سهم داشتند میتوان به برادران برنولی اشاره کرد.در واقع خانواده برنولی همان نقشی را در ریاضیات داشتند که خانواده باخ در موسیقی ایفا کردند.
تکمیل ساختار منطقی روشهای حساب دیفرانسیل و انتگرال را ریاضیدانان قرن 19 از جمله لوئی کوشی و کارل وایرشتراس
بر عهده گرفتند.
مطلب را با سخنی از جان فون نویمان که از ریاضیدانان بزرگ قرن بیستم است به پایان میبریم « حساب دیفرانسیل و انتگرال نخستین دستاورد ریاضیات نوین است و درک اهمیت آن کار آسانی نیست. به عقیده من،این حساب روشنتر از هر مبحث دیگری مرحله آغازی ریاضیات نوین را توصیف می کند؛و نظام آنالیز ریاضی، که توسیع منطقی آن است،هنوز بزرگترین پیشرفت فنی در تفکر دقیق به شمار می آید.»
فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد
تعداد صفحات این مقاله 18 صفحه
پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید