مقاله ربات بی سیم توپ جمع کن با کنترل تحت وب 30 ص با فرمت WORD
فصل اول : مقدمه
چیزهای بسیاری در مورد فواید تشویق دانشجویان جهت کار روی مسائلی از رشتههای مختلف علمی بصورت مشترک نوشته شده است و بسیاری از مسائل واقعی جهان جهت دستیابی از طریق کار فردی بسیار پیچیده هستند.
مجموع درسهای حاصل از دو گروه منظم، یکی از راههای تسهیل تجربة مشارکت علمی برای دانشجویان است. بخش اعتبارات فنی مهندسی حتی امکان کار بر روی تیمهای مشارکتی چندگانه را جزء یکی از یازده نتیجة برنامههای اصلی مورد نیاز قرار دارند. مهندسین طراحی و کارشناسان علوم تکمیلی کامپیوتر را جهت یک تجربه علمی گرد هم آوردهاند.
در پاییز سال 2002 دانشجویان به طراحی و تکمیل یک ربات بیسیم توپ جمع کن با کنترل تحت وب پرداختند که قادر به دوری از برخورد به موانع میباشد و توسط یک کاربر خارجی و از طریق یک سرور تحت وب کنترل میشود.
در این مقاله ما به فراهم آوردن پیش زمینه و تاریخچهای از این مجموعه واحد درسی در دانشکده «لوراس» پرداخته و به توصیف جنبههای ویژه درس و خلاصهای از نتایج گزارش سال اقدام کردیم سپس تلاشهای ارزیابی خود را که جهت گسترش فرآیند این مجموعه درسی مورد استفاده قرار دادیم.
فرمت فایل : word (قابل ویرایش) تعداد صفحات : 60 صفحه
چکیده
این تحقیق الگوریتمی جدید برای مسئله برنامه ریزی مسیرکلی به یک هدف ، برای ربات متحرک را با استفاده از الگوریتم ژنتیک ارائه می دهد .الگوریتم ژنتیک برای یافتن مسیر بهینه برای ربات متحرک جهت حرکت در محیط استاتیک که توسط نقشه ای با گره ها و لینک ها بیان شده است ،بکار گرفته شده است.موقعیت هدف و موانع برای یافتن یک مسیر بهینه در محیط دو بعدی داده شده است .هر نقطه اتصال در شبکه ژنی است که با استفاده از کد باینری ارائه شده است.تعداد ژن ها در یک کروموزوم تابعی از تعداد موانع در نقشه (نمودار)می باشد.
بنابراین از یک کروموزوم با طول ثابت استفاده کردیم.مسیر ربات ایجاد شده ، در مفهوم کوتاهترین مسیر ،بهینه است .ربات دارای محل آغاز و محل هدف تحت فرضیه ای است که ربات از هر محل فقط یکبار می گذرد یا اصلا نمی گذرد.نتایج بدست آمده در شبیه سازی ؛قدرت الگوریتم پیشنهادی را تایید می نماید.
مقدمه
مسئله طراحی مسیر ربات متحرک را می توان بصورت ذیل بیان کرد:
داده های مسئله (محل شروع،محل هدف، نقشه ای دو بعدی مسیرهاکه شامل موانع ساکن می باشد).هدف بدست آوردن یک مسیر بدون تصادم بین دو نقطه خاص در ایفای معیار بهینه سازی با در نظر گرفتن محدودیت ها (به احتمال زیاد:کوتاهترین مسیر)می باشد. مسئله طراحی مسیر از نظر محاسباتی بسیار پر هزینه است.
با اینکه حجم زیادی از تحقیقات برای حل بیشتر این مسائل انجام شده است،با این وجود،روش های معمول ،غیر قابل انعطاف می باشند.
اهداف مختلف بهینه سازی و تغییرات اهداف
عدم قطعیت ها در محیط ها
محدودیت های متفاوت برای منابع محاسباتی
مرور و بازنگری روش های موجود برای حل مسئله طراحی مسیر ،در [1] ارائه شده است . روش های زیادی برای ایجاد یک مسیر بهینه از قبیل برنامه ریزی دینامیک و روش های تبدیل مسافت گزارش شده است .
در روش برنامه ریزی دینامیک اگر نقطه ی شروعSP و نقطه ی هدف GP باشد ، نقطه ی زیر هدف IP است.و روش تولید مسیر ،نحوه تعیین توالی زیر اهداف است که زیر اهداف خود از مجموعه IP (I=1,2,3,…) انتخاب می شوند.ما باید تمام مسیرهای ممکن را بررسی کرده و مسیر با کمترین مقدار هزینه را به عنوان مسیر بهینه انتخاب نمائیم.توان محاسباتی بسیار فراوانی بویژه در محیط های دارای زیر اهداف فراوان مورد نیاز است . در روش تبدیل مسافت ،کارطراحی مسیر ،محیطی را با شبکه یکنواخت می پوشاند و فواصل را از طریق فضای خالی ،از سلول هدف،منتشر می کند.قسمت پیشین موج مسافت ،حول موانع و در نهایت از طریق تمامی فضاهای آزاد در محیط جریان می یابد.برای هر نقطه شروع در محیط نمایانگر محل اولیه ربات متحرک ،کوتاهترین مسیر به مقصد،از طریق رفتن به قسمت پائین و از طریق شیب دارترین مسیر نزولی رسم شده است.با این وجود به هنگام وجود دو سلول یا بیشتر جهت گزینش با همان حداقل تبدیل فاصله ابهام مسیرهای بهینه وجود دارد. دو روش مذکور ملزم توان محاسباتی بسیار بالا در محیطی است که دارای تعداد زیاد اهداف فرعی (زیر اهداف)و موانع است.
محققان روش های فراوان را برای حل مسائل طراحی مسیر ربات های متحرک با وجود موانع ایستا و متحرک بر مبنای soft computing ،بیان کرده اند. soft computing متشکل از منطق فازی،شبکه های عصبی و محاسبات تکاملی است (الگوریتم های ژنتیک و تکاملی GA & EA).تاکنون تلاش های زیادی در استفاده از منطق فازی برای طراحی و برنامه ریزی حرکت ربات متحرک وجود داشته است .اخیرا استفاده از محاسبات تکاملی رواج فراوانی پیدا کرده و در واقع روشی است که به منظور بکارگیری در موقعیت هایی که دانش اولیه راجع حل مسئله وجود نداشته و یا اطلاعات محدود می باشد،قابلیت استفاده به گونه ای موثرتر،عمومی تر و راحت تر را داراست.
الگوریتم های ژنتیکی و تکامکلی نیازمند اطلاعات اشتقاقی یا برآوردهای فرمال اولیه از راه حل نیستند و از آنجائیکه طبیعتا تصادفی می باشند دارای قابلیت جستجوی کل فضای جواب با احتمال بیشتر پیدا کردن بهینه عمومی می باشند.
می توان تحقیق قبلی راجع طراحی مسیر را به صورت یکی از دو روش مقابل طبقه بندی کرد: مبتنی بر مدل و مبتنی بر سنسور .
در حالت مبتنی بر مدل ،مدل های منطقی از موانع شناخته شده ،برای تولید تصادم بدون مسیر بکار گرفته می شوند.در حالیکه در روش مبتنی بر سنسور ، کشف و اجتناب از موانع ناشناخته است.در این مقاله الگوریتمی جدید جهت بدست آوردن مسیر بهینه بر مبنای مدل پیشنهاد شده است.
ادامه مطالب مقاله بصورت ذیل مرتب شده اند :
در بخش 2 ،مقدمه ای مختصر راجع الگوریتم ژنتیک ارائه شده است .در بخش 3 ،فرمول سازی مسئله مورد بررسی واقع شده،در بخش 4 الگوریتم پیشنهادی ، معرفی و در بخش 5 نتایج شبیه سازی نشان داده شده است.
1.مسیریابی
مسئله مسیریابی ربات در چند حالت قابل بررسی است :
در یک مفهوم می توان مسیریابی روبات را در قالب تعقیب خط (عموما مسیری از پیش تعیین شده با رنگ متفاوت از زمینه ) معرفی نمود.روبات هایی با این کاربرد تحت عنوان مسیریاب شناخته می شوند . یکی از کاربرد های عمده این ربات ، حمل و نقل وسایل و کالاهای مختلف در کارخانجات ، بیمارستان ها ، فروشگاه ها ، کتابخانه ها و ... میباشد .
ربات تعقیب خط تا حدی قادر به انجام وظیفه کتاب داری کتابخانه ها می باشد . به این صورت که بعد از دادن کد کتاب ، ربات با دنبال کردن مسیری که کد آن را تعیین میکند ، به محلی که کتاب در آن قرار گرفته می رود و کتاب را برداشته و به نزد ما می آورد .مثال دیگر این نوع ربات در بیمارستان های پیشرفته است ، کف بیمارستان های پیشرفته خط کشی هایی به رنگ های مختلف به منظور هدایت ربات های مسیریاب به محل های مختلف وجود دارد . (مثلا رنگ قرمز به اتاق جراحی یا آبی به اتاق زایمان.) بیمارانی که توانایی حرکت کردن و جا به جا شدن را ندارند و باید از ویلچر استفاده کنند ، این ویلچر نقش ربات تعقیب خط را دارد ، و بیمار را از روی مسیر مشخص به محل مطلوب می برد .
با توجه به وجود موانع (استاتیک و دینامیک) در محیط ،مسیریابی روبات در مفهومی کاربردی تر ،پیمودن مسیر مبدا تا مقصد بدون برخورد با موانع می باشد.مسلما با وجود تعداد زیاد موانع ،تعداد مسیرهای قابل عبور روبات بسیار زیاد خواهد بود و یقینا انتخاب کوتاه ترین مسیر توسط روبات برای حرکت از مبدا به مقصد ،دارای ارزش اجرایی بالایی خواهد بود.در این مقاله چنین مسئله ای مورد بررسی واقع شده است.نقاط مبدا و مقصد و نیز محل موانع به عنوان ورودی داده شده است ،نیز می دانیم موانع ایستا می باشند (در حالت وجود موانع پویا در عین نزدیکی بیشتر به شرایط واقعی ،روش های مورد استفاده بسیار پیچیده خواهند بود)و مسئله در حالت دو بعدی بررسی می شود (روبات بر روی صفحه حرکت می نماید). برای این منظور الگوریتم های مسیریابی با هدف انتخاب کوتاهترین مسیر قابل استفاده می باشند ،الگوریتم هایی که به منظور مسیریابی در شبکه ها قابلیت استفاده دارند.با این وجود در این بررسی از الگوریتم ژنتیک استفاده شده است . همچنین الگوریتم های ژنتیک و نیز دیگر روش های مشابه به منظور بهینه سازی مصرف انرژی روبات ،مسیر تغییر زاویه ازوی روبات ،زمان حرکت روبات و... قابل استفاده می باشند .
الگوریتم ژنتیک
GA در سال 1975توسط Holland بر پایه تقلیدی از تکامل طبیعی یک جمعیت پایه ریزی شد به نحوی که کروموزوم ها به منظور خلق نسل جدید اجازه تولید مجدد داشته و جهت بقاء در نسل آینده به رقابت می پردازند.با گذشت زمان ،بر روی نسل ها ، fitness بهبود می یابد و در نهایت بهترین راه حل قابل حصول است .اولین جمعیت p(0) به طور تصادفی با 0و1 کد می شود در هر نسل ،t، مناسبترین عناصر برای حضور در mating pool انتخاب می شوند و با سه عملگر پایه ای ژنتیک ؛ تولید مثل،ادغام و جهش ؛ جهت تولید نسل جدید تکامل می یابند .بر پایه بقاء بهترین هامی توان نتیجه گرفت کروموزوم های بدست آمده با استفاده از روشی منتخب بهترین کروموزوم ها قابل حصول می باشند.
از جمله مزایای GA که این روش را جهت بکارگیری آن در مورد انتخاب متغیر مناسب می نماید می توان به توانایی پیدا کردن بهینه عمومی با سرعت بالا،امکان جستجو موازی چند نقطه و نیز فرار از بهینه های محلی اشاره نمود.
Procedure
GA
Begin
t=0
initialize p(t)
evaluate p(t)
while not satisfy stopping rule do
begin
t=t+1
select p(t) from p(t-1)
alter(t)
evaluate p(t)
end
end
چنانچه بیان شد عموما تکامل از یک نسل به نسل بعد ،شامل سه مرحله است :ارزیابی تناسب،گزینش و بازآفرینی.
ابتدا ،جمعیت کنونی با استفاده از تابع تکامل تناسب ارزیابی شده و سپس بر اساس مناسب بودنشان طبقه بندی می شوند و در واقع نسل جدید با هدف بهبود و ارتقاء تناسب بوجود می آید.
روش بکار بردن عملگرهای ،تولیدمثل؛جهش و ادغام توسط الگوریتم ژنتیک به شکل زیر است :
در آغاز ، باز آفرینی منتخب ،بر روی جمعیت کنونی بنحوی بکار گرفته می شود که رشته ،تعدادی کپی ،بر اساس مناسب بودن آنها تهیه می کند.این عمل منجر به تولید جمعیت میانی خواهد شد. سپس دوما ،الگوریتم ژنتیک والدین را از جمعیت کنونی با احتمال بیشتر در انتخاب کروموزوم های بهتر گزینش می نماید.این عمل همراه با کمیت تناسب و دسته بندی کروموزوم خواهد بود و نهایتا (سوما)،این الگوریتم فرزندان (رشته های جدید)را از والدین منتخب با استفاده از اپراتورهای ادغام یا جهش بازآفرینی می نماید.اساسا ادغام،شامل تبادل تصادفی بیت هابین دو رشته جمعیت میانی می باشد.در نهایت عملگر جهش ،به طور تصادفی تعدادی از بیت های بین رشته های جدید را تعویض می نماید.این الگوریتم زمانی پایان می یابد که راه حل قابل قبول پیدا شودویا معیار همگرایی ایفا شود و یا وقتی که به تعداد محدود و از پیش تعیین شده تکرار دست یابیم.مشخصه های اصلی الگوریتم های ژنتیک این است که آنها می توانند فضای جستجو را به طور برابر جستجو کنند و نیازی به بهینه سازی تابع برای تمایز گذاشتن یا هرگونه ویژگی یکنواخت ندارند.دقت راه حل اکتسابی به تعداد کد مورد استفاده برای کدگذاری متغیر خاص(طول کروموزوم)بستگی دارد.
مـحصول سـال :۲۰۱۴سـازگار با افزونه های :WP e-Commerce 3.10.xسازگار با مرورگـرهای: فـونت ها :–تعداد فروش در تم فارست : ۴۲۷۲ فروش تا ۱۱ تیر ۱۳۹۵قیمت نسخه انگلیسی ۱۸ دلار بسته نصب آسان فارسی –نصب رایگانیک بار بصورت رایگان انجام می شود
گام به گام با با همراه شوید تا این افزونه شگفت انگیز را به شما معرفی کنیم :
افزونه ربات نویسنده حرفه ای وردپرس مقالات ، محصولات آمازون ، محصولات کلیک بانک ، ویدئو های یوتیوب ، ویدئوهای ویمئو ، مطالب سایت ها ، مزایدات Ebay ، تصاویر فلیکر ، تصاویر اینستاگرام ، پین های پینترست ، توییت های توییتر ، پست های فیسبوکی و آهنگ های سایت سآندکلاد را بصورت خودکار و با کیفیت بالا بصورت مستقیم بر روی وب سایت شما ارسال می کند .
کافیست این ربات را بر روی وردپرس خود نصب کرده تا بصورت ۲۴ ساعته در خدمت شما باشد .
ارسال خودکار مقالات به وردپرس :
افزونه با کلمه کلیدی که برای آن تعریف می کنید وارد وب سایت Ezinearticles.com شده و مقالاتی که با آن کلمه همخوانی دارند را بر روی وب سایت شما ارسال می کند.
ارسال مطلب از طریق فید سایت :
کافیست فید چند سایت به به افزونه بدهید تا افزونه در زمانبندی که برای آن مشخص می کنید مطالب را از سایت های مختلف وارد سایت شما کند .
ارسال مطلب کامل از فید خلاصه شده :
افزونه ربات نویسنده بصورت خودکار فید های خلاصه یا فشرده شده را باز کرده و مطلب اصلی را بر روی وب سایت شما ارسال می کند .
استخراج قسمت های مشخصی از فیدهای یک سایت :
افزونه ربات نویسنده این قابلیت را دارد که چند قسمت مختلف از یک مطلب را با استفاده از id/class یا Regex یا Xpath استخراج کرده آنها را به هم چسبانده و در نهایت بر روی وب سایت شما ارسال کند .
جستجو و جایگزینی :
یکی از قابلیت های کاربردی ربات نویسنده وردپرس جستجو و جایگزینی محتوا مطالب و عناوین جهت افزایش امتیاز سئو سایت است.
زمان اصلی پست ها :
یکی از قابلیت های جالب ربات نویسنده ارسال پست با همان تاریخ و زمانی است که آن مطلب در سایت مبداء ارسال شده است .
استخراج موضوعات :
افزونه بصورت خودکار موضوعاتی را در سایت ایجاد می کند که دقیقاً در سایت مبداء وجود داشته و طبیعاً مطالب دریافتی در همان دسته بندی ایجاد شده قرار می گیرند .
امکانات دیگر این بخش افزونه :
استخراج برچسب های سایت مبداء
استخراج نام نویسنده مطلب در سایت مبداء
عدم دریافت مطالب بدون محتوا
عدم دریافت مطالبی که زبان آنها انگلیسی نیست
عدم دریافت مطالب بدون تصویر
ارسال مطالب از قدیمی تر به جدیدتر
تبدیل کد های HTML
تبدیل کد های نوشتاری در سایت WINDOWS TO UTF-8
عدم دریافت مطالبی که قبلاً با عناوین مشابه در سایت راه اندازی شده اند
1. فایل های متلب مورد نیاز در یک پوشه با نام Code - خروجی طبق تصویر متحرک نمونه آورده شده (این برنامه در Matlab 2014 تست شده و 100 درصد به صورت تضمینی قابل اجرا می باشد)
2.فایل راهنمای اجرا به زبان فارسی
مناسب برای دانشجویان کارشناسی (لیسانس) و کاردانی و کارشناسی ارشد
می توان به عنوان پروژه دروس کارشناسی یا کاردانی یا دیپلم، دروسی مانند هوش مصنوعی، طراحی الگوریتم ها، Artificial Intelligence، آزمایشگاه هوش مصنوعی، رباتیک، دینامیک ماشین، شبیه سازی ماشین، هوش رباتیک، دینامیک حرکت، تجزیه و تحلیل ربات
پس از خرید از درگاه امن بانکی، لینک دانلود در اختیار شما قرار میگیرد و همچنین به آدرس ایمیل شما فرستاده می شود. تماس با ما برای راهنمایی، درخواست مقالات و پایان نامه ها و یا ترجمه و یا انجام پروژه های برنامه نویسی و حل تمرینات با آدرس ایمیل:
ebarkat.shop@yahoo.com
یا شناسه تلگرام (آی دی تلگرام ما): @ebarkat
توجه: اگر کارت بانکی شما رمز دوم ندارد و یا در خرید الکترونیکی به مشکل برخورد کردید و یا به هر دلیلی تمایل به پرداخت الکترونیکی ندارید با ما تماس بگیرید تا راههای دیگری برای پرداخت به شما پیشنهاد کنیم.
توجه توجه توجه: هرگونه کپی برداری و فروش فایل های فروشگاه برکت الکترونیک (به آدرس ebarkat.ir یا codes.sellfile.ir) در فروشگاه های دیگر شرعاً حرام است، تمامی فایل ها و پروژه های موجود در فروشگاه، توسط ما اجرا و پیاده سازی و یا از منابع معتبر زبان اصلی جمع آوری شده اند و دارای حق کپی رایت اسلامی می باشند.
از پایین همین صفحه (بخش پرداخت و دانلود) می توانید این پروژه را خریداری و دانلود نمایید.