خواص ساختاری، الکتریکی و اپتیکی نانو کامپوزیتهای پلیمری نیمرسانای شفاف
مقدمه ای کامل و جامع و بسیار مناسب برای نوشتن پایان نامه 37 صفحه فایل word با فهرست مطالب، جدولها و شکلها و با رعایت تمام نکات نگارشی و با مراجع معتبر ISI
اگر فایل خاصی مد نظر شماست بفرمائید تا در صورت امکان در سایت قرار گیرد.
___________________________________________________________________________________
-------------------------------------------------------------------------------------------------------------------
لینک عضویت در کانال تلگرامی دنیای فایل:
جهت اطلاع از آخرین و تمام فایلهای تحقیقاتی موجود، شما می توانید با کلیک بر روی لینک زیر و سپس کلیک بر روی join در پایین صفحه در کانال عضو شوید
https://telegram.me/joinchat/CYcguj_Bx3i5GIwnbs2zTw
payannameht@gmail.com
فایلهای مرتبط:
خواص و کاربردهای نانوکامپوزیت های آلی- معدنی
-1- خواص اپتیکی نانو کامپوزیتهای آلی– معدنی
ویژگیهای مفید اپتیکی و کاربردهای نانوکامپوزیتهای آلی-معدنی (PINC ها)[1]، شامل جذب نور (نور مرئی و UV)، فوتولومینسانس، ضریب شکست اپتیکی زیاد و دورنگ نمایی[2]، قرنهاست که آنها را تبدیل به طبقه مهمی از مواد کاربردی کرده است. خواص اپتیکی کامپوزیتهای PINC وابسته به اندازه و توزیع فضایی ذرات معدنی در ماتریس پلیمر است [1].
- جذب کنندگی UV
PINC هایی که شامل پلیمر و جذب کنندههای UV معدنی مانند TiO2 و ZnO هستند، با افزودن مستقیم نانوفیلرها به ماتریسهای پلیمر ترکیب شدهاند. برای مثال شکل (2-1) از طیف UV-VIS نانوکامپوزیتهای پلی متیل متا آکریلات/اکسید روی (PMMA/ZnO) سنتز شده توسط پلیمریزاسیون سل ژل در محل (شکل 2-2) نشان میدهد که نانوکامپوزیتهای PMMA/ZnO حتی در غلظتهای پایین فیلرZnO (wt% 017/0) به طور قطع دارای اثر سدکنندگی UV است، اما شفافیت بالایی را در ناحیه مرئی حتی در اندازههای بزرگ (ضخامت cm1) حفظ میکند. علاوه بر این، نانوکامپوزیتهای PMMA-ZnO بازدهی بسیار بالاتری در دفع UV نسبت به لنزهای تجاری که تماسی و سدکننده UV هستند دارد، زیرا قدرت انتقال این لنزها در دامنه 290 تا nm 340 تقریباً صفر است [2،3].
.
.
- فوتولومینسانس [1] (نور گسیل)
نانوکامپوزیت با نانوذرات غیر رسانای اکسید/پلیمر به دلیل حضور گروههای کربوکسیلات در فاصله بین سرامیک و PMMA از خود گسیل نور[2] نشان میدهند، در حالیکه نانوذرات نیمرسانا همچون ZnO، دارای نور گسیل ذاتی هستند. نانوکامپوزیتهای فوتولومینسان دارای پتانسیل بالایی برای کاربرد در زمینههای مختلف هستند. برای مثال، نانوکامپوزیتهای اپوکسی با پایه ZnO را میتوان برای نوردهی در قطعات حالت جامد استفاده کرد.
در همین راستا، دو [3] و همکارانش [4] نیز نانوذرات ZnO تعبیه شده در ماتریس پلیمر چربی دوست PMMA را به روش سل ژل غیر متعادل سنتز کرده و خواص فوتولومینسانس (تابندگی) آن را مطالعه کردند. آنها دریافتند که نانوذرات ZnO (nm 6-5) که در PMMA جایگذاری شدهاند، نشان دهنده عبور UV در طول موج nm334، به دلیل اثرات کوانتومی در اندازه نانوذرات و همچنین نشان دهنده فوتولومینسانس در طول موج nm 346، به دلیل حضور اکساتیونهای مقید [4] در کمپلکسهای R-(Coo)- ZnO است (شکل 2-3). همچنین آنها عکس TEM از این نانوکامپوزیت را به صورت شکل (2-4) ارائه کردند.
.
.
-2- خواص الکتریکی نانوکامپوزیتهای آلی– معدنی:
نانوکامپوزیتهای پلیمری- معدنی رابطه تنگاتنگی با طراحی قطعات الکترونیکی و اپتیکی – الکترونیکی دارد. مقیاس ابعادی قطعات الکترونیکی در حال حاضر وارد محدوده نانو شده است[1]. سو[1] و کورا ماتا[2] [6]، سنتز نانوکامپوزیتهای PANI/TiO2 را با پلیمریزاسیون در محل PANI در حضور نانوذرات TiO2 گزارش کردند. در این گزارش پوستههای نانوکامپوزیت سنتز شده، رسانایی قابل توجهی (S/cm 10-1) نشان دادند که این رسانایی با گرمادهی به مدت یک ساعت در دمای ̊C80، افزایش یافته است. شکل(2-7) رسانایی و اثر دمای حرارتی در نانوکامپوزیت PANI-DBSA/TiO2-DBSA، با محتوای مختلف از TiO2 را نشان میدهد. هدایت لایه نانوکامپوزیتی با افزایش مقدار TiO2 کمی افزایش مییابد، و سپس با محتوای بیش از حد TiO2 کاهش مییابد....
.
.
-3- خواص مغناطیسی نانوکامپوزیتهای آلی– معدنی:
نانو ذرات مغناطیسی جزو یکی از دو گروه زیر هستند: گروهی شامل نانو ذرات فلزی و گروهی دیگر شامل نانوذرات Fe2O3، Fe3O4 یا هیدروکسید آهن[1] هستند. بیشتر نانوکامپوزیت های حاصل از نانوذرات فلزی یا هیدروکسید آهن، بدون پسماند مغناطیسی[2] هستند که این امر نشان دهنده یک ماده فرا پارامغناطیس[3] است.
ژان [4] و همکارانش، در پوسته های نانوکامپوزیت PI/γ-Fe2O3، رفتاری فرا پارامغناطیسی مشاهده کردند. آنها همچنین مشاهده کردند که با افزایش محتوای بار Fe3O4 از wt%2 به wt%8، مغناطش اشباع [5] پوسته های نانوکامپوزیت PI/γ-Fe2O3 ، از A 2-10× 354/1 به A 2-10× 220/4 افزایش یافت. بنابراین خواص مغناطیسی نانوکامپوزیت ها را میتوان با تغییر دادن محتوای بار Fe3O4، کنترل کرد. شکل (2-11) نشاندهنده حلقههای پسماند مغناطیسی نانوکامپوزیتهای پلی پیرول است که با بارگذاری 20 و 50 درصد وزنی از نانوذرات اکسید آهن ...
.
.
-4-1- مطالعه خواص ساختاری و اپتیکی نانوکامپوزیت PVA/TiO2:
ملک پور و براتی[8] نانوکامپوزیتهای پلیمری مشتق شده از پلی وینیل الکل (PVA) و نانوذرات دی اکسید تیتانیوم (TiO2) را سنتز نموده و خواص فیزیکی آن را بررسی نمودند. آنها در این تحقیق ابتدا نانوذرات TiO2 با سطح اصلاح شده را تهیه کرده و سپس نانوکامپوزیت PVA/TiO2 را تهیه کردند، بدین طریق که مقادیر مختلف نانوذرات اصلاح شده سطحیTiO2 (5، 10، 15 و 20 wt% از PVA) را با 1/0 گرم PVA مخلوط کردند. سپس مخلوط حاصل را در ml 15 اتانول خالص پخش کرده و به مدت 2 ساعت سونش[1] نمودند و ...
فهرست مطالب
فصل دوم : خواص ساختاری، الکتریکی و اپتیکی نانو کامپوزیتهای پلیمری نیمرسانای شفاف .1
2-1: خواص اپتیکی نانو کامپوزیتهای آلی– معدنی.. 1
2-2: خواص الکتریکی نانوکامپوزیتهای آلی– معدنی.. 6
2-3: خواص مغناطیسی نانوکامپوزیتهای آلی– معدنی.. 9
2-4: مطالعه خواص فیزیکی نانوکامپوزیتهای انتخابی.. 10
2-4-1: مطالعه خواص ساختاری و اپتیکی نانوکامپوزیت PVA/TiO2 10
2-4-2: مطالعه و بررسی خواص نانوکامپوزیت پلی آنیلین دوپ شده با اکسید قلع (PANI/SnO2) 15
2-4-3: سنتز و مشخصه یابی نانوکامپوزیت TiO2-SiO2:PVA (TSP) 24
2-4-4: رشد لایه های نازک اکسید قلع با ناخالصی فلوئور بر بستر های پلیمری شفاف و انعطافپذیر. 29
مراجع. 33
فهرست شکلها
شکل 2-1: طیف UV-VIS نانوکامپوزیتهای PMMA/ZnO 2
شکل 2-2: عکس های دیجیتال از مواد هیبریدی PMMA/ZnO 2
شکل 2-3: طیف فوتولومینسانس از فیلم PMMA/ZnO در مدت زمان واکنش متفاوت.. 4
شکل 2-4 تغییرات اندازه میانگین دانهها با مقادیر مختلف ناخالصی از آهن.. 4
شکل 2-5: الگوی XRD از نانوذرات آمورف TiO2 5
شکل2-6: تغییرات ضریب شکست و طیف عبوری از پوششهای نانوکامپوزیت... 6
شکل 2-7: هدایت الکتریکی PANI-DBSA/TiO2-DBSA با محتوای مختلف از TiO2 7
شکل 2-8: الگوهای پراش XRD از نانوکامپوزیتهای PANI/TiO2 8
شکل 2-9: ثابت و اتلاف دی الکتریک نانوکامپوزیتهای PANI/TiO2 8
شکل 2-10: هدایت الکتریکی نانوکامپوزیتهای PANI/TiO2 در دمای C˚ 35. 9
شکل 2-11: حلقه پسماند مغناطیسی نانوکامپوزیتها در بارگذاری های مختلف... 10
شکل 2-12: الگوی پراش XRD نانوکامپوزیت PVA/TiO2 12
شکل 2-13: تصاویر SEM از: (a,b) PVA خالص؛ (c-f) نانوکامپوزیت PVA/TiO2، wt%10. 13
شکل 2-14: صاویر AFM از توپوگرافی سطح نانوکامپوزیت PVA/TiO2 13
شکل 2-15: طیف شفافیت UV-VIS غشاهای نانوکامپوزیتی PVA/TiO2.. 14
شکل 2-16: تصویر شماتیک از تشکیل نانوکامپوزیت PANI/SnO2. 17
شکل 2-17: تصویر SEM از نانوکامپوزیت PANI/SnO2. 17
شکل 2-18: طیف FTIR از نانوکامپوزیت PANI/SnO2. 19
شکل 2-19: طیف XRD از نانوکامپوزیت PANI/SnO2 20
شکل 2-20: پاسخ مقاومت نانوکامپوزیتهای PANI/SnO2 20
شکل 2-21: تصاویر FESEM از موفولوژی سطح نانو کامپوزیت PANI/SnO2. 23
شکل 2-22: تصاویر TEM نانو کامپوزیت PANI/SnO2. 24
شکل 2-23: : تصاویر SEMو TEM، از نانوکامپوزیتهای TS و TSP. 27
شکل 2-24: طیف XRD از نانوکامپوزیت های TS و TSP. 27
شکل 2-25: طیف UV-vis از نانوکاکمپوزیتهای TS و TSP. 28
شکل 2-28: میکروگرافSEM از فیلمFTO بر بسترPET 32
خواص ساختاری، الکتریکی و اپتیکی نانو کامپوزیتهای پلیمری نیمرسانای شفاف