فی دوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی دوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق در مورد مدولاسیون QAM

اختصاصی از فی دوو تحقیق در مورد مدولاسیون QAM دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد مدولاسیون QAM


تحقیق در مورد مدولاسیون QAM

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

  

تعداد صفحه16

 

فهرست مطالب

 

- تعریف مدولاسیون QAM:

3-2-مودم QAM:

3-3- بخش فرستنده:

مبدل انالوگ به دیجیتال:

مبدل آنالوگ به دیجیتال ( (ADCسیگنال با باند محدود را به منظور انتقال و عمل دیجیتال کردن آن میگیرد و هر سطح کوانتیزاسیون آنالوگ را در هر بار نمونه برداری به یک سطح کوانتیزاسیون مجزا تبدیل می کند .

به عنوان مثال در یک مبدل آنالوگ به دیجیتال 8 بیتی به ازای هر سطح کوانتیزاسیون جدا شده یک پاسخ باینری 8 بیتی در خروجی داریم.نمودار زیر بیانگر نوع عملیات در یک  ADC می باشد:

 


دانلود با لینک مستقیم


تحقیق در مورد مدولاسیون QAM

دانلودمقاله مدولاسیون QAM

اختصاصی از فی دوو دانلودمقاله مدولاسیون QAM دانلود با لینک مستقیم و پر سرعت .

 

 

 


- تعریف مدولاسیون QAM:
در مدولاسیونMPSK اختلاف فقط در فاز پالس ها است و در مدولاسیون MASKاختلاف فقط در دامنه پالس ها است ولی درمدولاسیونMQAM اختلاف در فازو دامنه پالس ها است.
لازم به ذکر است که M=2 پالس ها و لذا سیگنال متشکل از آنها را می توان به دو مولفه سینوسی _ کسینوسی تجزیه کرد یعنی در این حالت هم سیگنال نظیردو مدولاسیون DSB است یکی با و دیگری با به این دلیل به آن QAM گفته می شود.
مدولاسیون MQAM همانطور که گفته شد دارای دو کاریر می باشد که یکی دقیقا با ْ90 درجه اختلاف فاز نسبت به دیگری وجود دارد. همانطور که در شکل زیر دیده می شود٬ابتدا دو مولفه I وQ در مدولا تور QAM به صورت زیر تولید می شود:
مدولاسیون MQAM دارای عرض باند می باشد و برای آشکار سازی کافی است همبستگی با دو مولفه سینوسی و کسینوسی محاسبه شود.
3-2-مودم QAM:
یک سیستم مخابراتی به صورت عموم دیتا می گیرد و بعد از انجام برخی از پردازشها و تبدیل فرکانسی دیتا را می فرستد و همین عمل را به صورت معکوس در گیرنده انجام می دهد. بلوک دیاگرام یک سیستم QAM در شکل نشان داده شده است.

شکل 16: بلوک‌دیاگرام فرستنده-گیرنده

 

در یک سیستم مخابراتی دیجیتال سیگنالهای ورودی به مودم یک رشته سیگنال از یک منبع دیجیتال یا یک کد گذار کانال.اگر هر چند هم که سیگنال ورودی به مودم بوسیله یک منبع آنالوگ تولید شده باشد ٬ باید قبل از قرار گرفتن در جایگاه نمونه برداری به پهنای باند B محدود شود.طبق قضیه نایکوئیست حتما فرکانس نمونه برداری باید دو برابر پهنای باند باشد .
به عنوان مثال بیشترین انرژی یک سیگنال صدا در فرکانس زیر متمرکز شده و از این رو سیگنال های صحبت به طور نوعی دارای یک فیلتر پایین گذر با پهنای باند هستند و این یک سرعت نمونه برداری برای فرکانس یا بالاتر را طلب میکند. لازم به ذکر است که اغلب سیستم های مخابراتی برای انتقال صدا از سرعت نمونه برداری برای فرکانس استفاده می کنند.
بعد از این مقدمه ما به شرح هر یک از بلوک های به کاررفته در یک مودم می پردازیم:
3-3- بخش فرستنده:
_مبدل انالوگ به دیجیتال:
مبدل آنالوگ به دیجیتال ( (ADCسیگنال با باند محدود را به منظور انتقال و عمل دیجیتال کردن آن میگیرد و هر سطح کوانتیزاسیون آنالوگ را در هر بار نمونه برداری به یک سطح کوانتیزاسیون مجزا تبدیل می کند .
به عنوان مثال در یک مبدل آنالوگ به دیجیتال 8 بیتی به ازای هر سطح کوانتیزاسیون جدا شده یک پاسخ باینری 8 بیتی در خروجی داریم.نمودار زیر بیانگر نوع عملیات در یک ADC می باشد:

شکل17:امواج ورودی و خروجی به ADC

 

اختلاف بین سیستم های مخابراتی دیجیتال و اغلب سیستم های مخابراتی آنالوگ سنتی در بکارگیری تکنیک انتقال سیگنال می باشد. در یک رادیو آنالوگ سیگنال فرستاده شده به صورت مستقیم مدوله شده و اغلب با ضرب ساده با کاریر حمل می شود.در طرف دیگر سیستم های دیجیتال بیشتر از مدولاسیون همبستگی استفاده می کنند که می تواند دیتای ورودی را با کیفیت خوب بر روی کاریر نگاشت می کند. با وجود پیچیدگی سیستم دیجیتال استفاده از تکنیک دیجیتال به این علت است که لینک دیجیتال می تواند سیگنال پردازش شده را با خطای کمتری تحویل دهد در حالیکه در سیستم آنالوگ به دلیل وجود همیشگی نویزهای گوسی در وسائل و تجهیزات شاهد افت اطلاعات هستیم.
_بخش :Mapping
در عمل Mappingبیتهای اطلاعات بر روی رشته های مدوله شده با کاریرهای I وQ قرار دارند و نقش اساسی در تعیین مشخصات یک مودم را بازی می کنند.
Mapping می تواند به وسیله یک دیاگرام که دیاگرام فضای حالت نامیده می شود نشان داده شود. یک چنین دیاگرامی از از یک منحنی دو بعدی حاصل می شود که دامنه های لول های IوQ در هر یک از نقاط منحنی مشخص شده باشد .برای یک مدولاسیون دامنه باینری ساده دیاگرام آن دارای دو نقطه میباشد که هر دو در طرف مثبت محور Xها قرار دارد.
دامنه منفی در اصل نشان می دهد که در انتقال یک سیگنال یک شیفت فازی به اندازه 180 درجه انجام شده است. نقاطی که در روی دیاگرام شیفت فازی پیدا می کنند می توانند برای ما این نکته را توصیف کنند که این نقاط هم دارای فاز و هم دارای دامنه می باشند که دامنه نشان دهنده خاصیت مغناطیسی کاریر فرستاده شده می باشد و فاز نشان دهنده شیفت فازی از کاریر نسبت داده شده به اسیلاتور محلی در فرستنده می باشد. در این دیاگرام مولفه های (Inphase) IوQ(Quadrature) به ترتیب در روی دو محور XوY قرار دارند. ودر یک دیاگرام مربعی 16QAM که در شکل زیر نشان داده شده است هر نقطه با یک سمبل 4 بیتی نشان داده شده است:

شکل18:دیاگرام فضای حالت 16QAM

 

که شامل بیتهای هم فاز و و بیتهای تربیعی و می باشد که به منظور ترکیب و و و در میان آنها قرار داده شده است.
مولفه های IوQ موجود در ربع چهارم بوسیله بیتهای 01 و 00 و 10 و11 کدبندی گری شده اند و لول های آن ها نیز به ترتیب d3 وd و-d وd3- میباشد.
محاسبه مقدار متوسط انرژی در چنین دیاگرامی به صورت زیر می باشد:

هر شکل دهی دیگری برای 16QAM که مانند دیاگرام بالا نباشد باعث افت انرژی می شود.بنابراین ما ادعا می کنیم که یک انرژی نویز پایدار برای نسبت سیگنال به نویز لازم است تا به همان سرعت خطای بیت (BER) که بالا نیز خواهد بود برسیم.
فاصله Hamming بین هر دو نقطه در بیتهای Mapping برای آن نقاط متفاوت است٬ بنابراین نقاطی که به صورت 0101 و 0111 نمایش داده شده اند یک فاصله Hamming از 1 و نقاطی که به صورت 0101 و 0011 نمایش داده شده اند دارای چنین فاصله ای از 2 می باشد.
هر زمانی که فازور انتقال داده شده توسط نویز دچار آسیب گردد٬ این کد گذاری گری می باشد که این تخریب را به اندازه کافی فراهم می کند که در نتیجه این عمل به غلط به عنوان یک نقطه فضای حالت مجاور مشخص می شود که بعدا این دمدولاتور می باشد که یک فازور با یک خطای بیت را انتخاب می کند٬ این امر احتمال خطا را کاهش می دهد.
در شکل زیر ما منحنی از یک توالی چهارتایی از مولفه I را که توسط Mapper تولید شده است را مشاهده می کنیم:

شکل19:نمایش مولفه Iو Q در حوزه زمان

 


به دلیل انتقال های فوری و لحظه ای در حوزه زمان ٬ رشته I دارای پهنای باند بینهایت می باشد و از اینرو به یک کانال با پهنای باند زیاد نیاز خواهد داشت.مولفه Q دارای زمان و حوزه فرکا نسی مشابه می باشد. این سیگنال ها باید قبل از انتقال به منظور در بر گرفتن طیفی در محدوده باند محدود ٬ محدود شوند و بنابراین به حداقل رساندن تداخل توسط سایر سیستم ها و استفاده کننده ها منجر به تقسیم طیف می شود.

 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  16  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلودمقاله مدولاسیون QAM

دانلودمقاله مدولاسیون AM

اختصاصی از فی دوو دانلودمقاله مدولاسیون AM دانلود با لینک مستقیم و پر سرعت .

 

 

 

مدولاسیون و کدگذاری
مدولاسیون و کدگذاری، اعمالی هستند که در فرستنده انجام می شوند تا انتقال اطلاعات کامل و قابل اطمینان گردد.

 

روش‌های مدولاسیون
مدولاسیون دو نوع موج را دربر می‌گیرد:
1. «سیگنال مدوله‌کنند» که بیانگر پیام است
2. «موج مدوله» که برای کاربردی خاص مورد استفاده قرار می‌گیرد.
مدوله‌کننده حامل را با تغییرات سیگنال مدوله‌کننده به صورت سیستماتیک تغییر می‌دهد. بدینصورت موج مدوله‌شده حاصل، اطلاعات پیام را حامل می‌کند. ما معمولاً نیاز داریم که مدولاسیون یک عمل قابل بازگشت باشد، بنابراین با فرآیند مکمل «دی‌ مدولاسیون» می‌توانیم پیام را بازسازی کنیم.
شکل زیر، قسمتی از یک سیگنال مدوله آنالوگ (قسمت a) و موج مدوله شده آن را نشان می‌دهد که با تغییردادن دامنه یک موج سینوسی (قسمت b) بدست آمده است. این همان مدولاسیون دامنه (AM) است که برای پخش رادیویی و کاربردهای دیگر مورد استفاده قرار می‌گیرد.
پیام را ممکن است با مدولاسیون فرکانس (FM) یا مدولاسیون فاز (PM) نیز روی حامل سینوسی سوار کرد. تمام روش‌های مدولاسیون با حامل سینوسی، تحت عنوان مدولاسیون «موج پیوسته» (CW) دسته‌بندی می‌شوند.
اتفاقاً هنگامی که شما صحبت می‌کنید، همانند یک مدوله‌کننده (CW) عمل می‌نماید. انتقال صدا از طریق هوا با تولید نواخت‌های حامل در تار آواها و مدوله‌کردن این نواخت‌ها با اعمال ماهیچه‌ای دستگاه گویایی انجام می‌گیرد. بنابراین آنچه گوش به عنوان سخن می‌شوند، یک موج آکوستیک مدوله‌شده است که شبیه یک سیگنال AM می‌باشد.

(a) سیگنال مدوله
(b) حامل سینوسی با مدولاسیون دامنه
(c) حامل با مدولاسیون دامنه
اکثر سیستم‌های مخابراتی فواصل دور، یک حامل فرکانسی مدولاسیون CW را بکار می‌گیرند که خیلی بالاتر از بالاترین جزء فرکانسی سیگنال مدوله می‌باشد.
بنابراین طیف سیگنال مدوله‌شده در باندی از دامنه‌های فرکانسی است که در پیرامون حامل فرکانسی قرار دارند. تحت این شرایط که ما می‌گوییم که مدولاسیون CW «تبدیل فرکانسی» تولید می‌کند.
برای مثال در پخش به طریق AM، طیف پیام بطور نمونه از 100 هرتز تا 5 کیلوهرتز را دربر دارد. اگر فرکانس حامل 600 کیلوهرتز باشد، طیف حامل مدوله شده 595 تا 605 کیلوهرتز را می‌پوشاند.
روش دیگر مدولاسیون که «مدولاسیون پالسی» خوانده می‌شود، دارای قطار پالسی از پالس‌های کوتاه به عنوان موج حامل می‌باشد. شکل قبل، موجی را با مدولاسیون دامنه پالسی (PAM) نشان می‌دهد. توجه شود که این موج PAM شامل نمونه‌های کوتاهی است که از سیگنال آنالوگ در بالای شکل گرفته است. «نمونه‌برداری» یک تکنیک پردازش سیگنال مهم است و تحت شرایط مشخصی ممکن است که یک شکل موج کامل از نمونه‌های تناوبی را «بازسازی» کنیم.
اما مدولاسیون پالسی به تنهایی تبدیل فرکانسی لازم برای انتقال سیگنالی مناسب را تولید نمی‌کند. بنابراین تعدادی از فرستنده‌ها پالس و مدولاسیون CW را با هم ترکیب می‌کنند. تکنیک‌های دیگر مدولاسیون که بطور خلاصه تشریح شده است، مدولاسیون پالس را با کدگذاری ترکیب می‌کنند.
مزایا و کاربردهای مدولاسیون
هدف اولیه مدولاسیون در یک سیستم مخابراتی تولید یک سیگنال مدوله‌شده مناسب با خصوصیات کانال انتقال می‌باشد. در واقع چندین مزیت و کاربرد عملی مدولاسیون در زیر مورد بحث قرار می‌گیرد.

 

مدولاسیون برای انتقال مناسب
انتقال سیگنال در فاصله‌های قابل توجه همواره یک موج الکترومغناطیس سیار با یک رابط هدایت‌کننده یا بدون آن دربر دارد. کارآیی هر روش انتقال خاص به فرکانس سیگنالی که ارسال می‌شود، بستگی دارد. با بکارگیری قابلیت تبدیل فرکانسی مدولاسیون CW، اطلاعات پیام را می‌توان روی حاملی که فرکانسش برای روش انتقال موردنظر انتخاب شده، سوار کرد.
به عنوان موردی از این نکته، انتشار امواج در خط دید آنتن‌هایی نیاز دارد که ابعاد فیزیکی آنها حداقل 1/1 طول موج سیگنال است. بدین طریق، انتقال مدوله‌نشده یک سیگنال صوتی که شامل اجزاء فرکانسی پایین تا 100 هرتز می‌باشد به آنتی‌هایی به طول 300 کیلومتر نیاز دارد.

 

انتقال‌ مدوله شده در 100 مگاهرتز مثلاً در پخش FM، استفاده از یک آنتن قابل استفاده به اندازه تقریبی یک متر را امکان‌پذیر می‌سازد. در فرکانس‌های پایین 100 مگاهرتز، روش‌های تکثیر دیگری با آنتن‌هایی به اندازه مقبول، کارآیی بیشتری دارند. نشریه دوفرانس، عملکرد فشرده‌ای از پخش امواج رادیویی و آنتن‌ها در اختیار می‌گذارد.
شکل زیر، به منظور اهداف رجوعی نسبت‌هایی از طیف الکترومغناطیسی را نشان می‌دهد که مناسب انتقال سیگنالی است. این شکل شامل طول موج فضای آزاد، عناوین باندهای فرکانسی و وسایل انتقال نمونه‌ای و روش‌های انتشار امواج می‌باشد. همچنین کاربردهایی نمونه‌ای را دربر دارد که توسط کمیسیون مخابرات فدرال ایالات متحده رسمیت یافته است.

 

مدولاسیون برای غلبه بر محدودیت‌های سخت‌افزاری
ممکن است که طرح یک سیستم مخابراتی به خاطر قیمت و در دسترس نبودن سخت‌افزار که غالباً عملکردشان بسته به فرکانس کار است، محدود گردد. مدولاسیون به طرح امکان می‌دهد که سیگنال را در یک محدوده فرکانسی قرار دهد که محدودیت‌های سخت‌افزاری نداشته باشد. یکی از ملاحظات خاص در طول این خط مسئله، «پهنای باند جزئی» می‌باشد که آن پهنای باند مطلقی است که بوسیله فرکانس مرکزی تقسیم شده است.
اگر پهنای باند جزئی بین 1-10% نگه داشته شود، هزینه‌ها و پیچیدگی‌های سخت‌افزاری به حداقل می‌رسد. ملاحظات پهنای باند جزئی این واقعیت را که واحدهای مدولاسیون هم در گیرنده‌ها و هم در فرستنده‌ها وجود دارند، توجیه می‌کند.
به همین سان سیگنال‌های با پهنای باند گسترده را باید با حامل‌هایی که دارای فرکانس بالا هستند، مدوله کرد. از آنجائیکه میزان اطلاعات به نسبت پهنای باند بر طبق قانون هرتلی ـ شانون می‌باشد، نتیجه می‌گیریم که میزان زیادی از اطلاعات به یک فرکانس حامل بالا نیاز دارد.
برای مثال، یک سیستم مایکروویو 5 مگاهرتزی می‌تواند در یک فاصله زمانی مفروض اطلاعاتی معادل 10000 برابر، کانال رادیویی 500 کیلوهرتزی را منتقل نماید و در طیف الکترومغناطیس حتی بالاتر رفته و یک شعاع لیزر نوری دارای قابلیت پهنای باند معادل 10 میلیون کانال تلویزیونی می‌باشد.

طیف الکترومغناطیس
مدولاسیون برای کاستن نویز و تداخل
یکی از روش‌های موثر مقابله با نویز و تداخل، افزودن قدرت سیگنال است، تا حدی که بر نویز و تداخل غلبه‌ کند. اما توان افزایشی پرهزینه بوده و ممکن است به تجهیزات صدمه برساند. (یکی از خطوط اولیه ترانس آتلانتیک در تلاش برای مفیدساختن سیگنال دریافتی با نیروی قوی، از بین رفت)
خوشبختانه FM و چند نوع دیکر مدولاسیون قابلیت ارزشمندی در جلوگیری از تاثیر نویز و تداخل دارند. این قابلیت، «کاهش نویز باند عریض» خوانده می‌شود، زیرا به پهنای باند ارسالی بیشتری نسبت به پهنای باند سیگنال مدوله نیاز دارد. بنابراین، مدولاسیون باند عریض به طراح امکان می‌دهد که پهنای باند افزایش یافته را به ازای قدرت کاهش یافته سیگنال داشته باشد، تعویضی که قانون هارتلی ـ شانون نیز متضمن آن است. توجه شود که ممکن است یک حامل فرکانس بالاتر برای مدولاسیون پهنای باند، مورد نیاز باشد.

 

مدولاسیون برای تخصیص فرکانس
هنگامی که شما ایستگاه خاصی را با رادیو یا تلویزیون می‌گیرید، مشغول انتخاب یکی از سیگنال‌های بسیاری هستید که در آن لحظه دریافت می‌شود. از آنجائیکه هر ایستگاه دارای فرکانس حامل معین متفاوتی است،
سیگنال موردنظر را می‌توان با فیلترکردن از سیگنالی دیگر جدا کرد. اگر مدولاسیون نبود، در یک منطقه مفروض تنها یک ایستگاه قابل پخش وجود داشت، در غیراینصورت دو یا چند ایستگاه روی هم می‌افتاد و تداخل مایوس‌کننده‌ای بوجود می‌آورد.

 

مدولاسیون برای مالتی‌پلکس کردن
مالتی‌پلکس کردن، فرآیند ترکیب کردن چند سیگنال برای انتقال همزمان روی یک کانال است. مالتی‌پلکس، تقسیم فرکانسی (FDM) برای قراردادن هر سیگنال روی یک حامل فرکانس متفاوت از مدولاسیون CW استفاده می‌کند و مجموعه‌ای از فیلترها و سیگنالها را در مقصد تفکیک می‌نماید. مالتی‌پلکس تقسیم زمانی (TDM) برای نمونه‌های سیگنال‌های متفاوت در مقاطع زمانی متمایز از مدولاسیون پالسی استفاده می‌کند. برای مثال در شکل زیر شکاف بین پالس‌ها را می‌توان با نمونه‌هایی از سگنال‌های دیگر، پرکرد. سپس یک مدار سوئیچینگ در مقصد برای بازسازی سیگنال، نمونه‌ها را از هم جدا می‌نماید.
کاربرد مالتی‌پلکس، شامل تله‌متری اطلاعات (مسافت‌سنجی رادیویی)، پخش استریوفینگ FM و تلفن دوربرد می‌باشد. تعدادی معادل 1800 سیگنال صوتی را می‌توان روی یک کابل کواکسیال با قر کمتر از یک سانتی‌متر مالتی‌پلکس کرد. بدین‌سان مالتی‌پلکی راه دیگری برای کارآیی فزاینده مخابرات فراهم می‌آورد.
روش‌های کدگذاری و فایده‌های آن
م مدولاسیون را به عنوان عمل پردازش سیگنال به منظور انتقال موثر تشریح کردیم. کدکردن عمل پردازش سمبل است که برای مخابرات پیشرفته هنگامی که اطلاعات دیجیتالی یا قابل ارائه به صورت سمبل‌های گسسته هستند، بکار می‌رود. ممکن است برای انتقال دیجیتالی راه دور به صورت مطمئن، هردو عمل کدکردن و مدولاسیون ضروری باشد.
عمل کدگذاری، پیام دیجیتالی را به صورت یک سری از سمبل‌های جدید درمی‌آورد. عمل دی‌کودینگ یک سری سمبل کدشده را احتمالاً با خطاهایی که بخاطر آلودگی‌های انتقال ایجاد می‌شود، به صورت پیام اولیه درمی‌آورد. اکثر روش‌های کدکردن مدارهای لاجیک دیجیتالی و سمبل‌های باینری را که با ارقام 0.1 تطبیق دارد، دربر می‌گیرد
یک ترمینال کامپیوتری یا منبع دیجیتالی دیگری را در نظر بگیرید که دارای تعداد سمبل M>>2 باشد. انتقال بدون کدگذاری یک پیام از این منبع به تعداد M موج متفاوت هرکدام برای انتقال یک سمبل نیاز دارد، درصورتیکه هر سمبل را می‌توان یک کد باینری که از K رقم باینری تشکیل شده، نمایش داد. از آنجائیکه 2k کلمه با استفاده از K رقم باینری می‌توان ساخت، ما به K≥log2M رقم برای هر کلمه کد احتیاج داریم تا M سمبل منبع را به صورت کد درآوریم.
اگر منبع r سمبل در هر ثانیه تولید کند، کد باینری دارای Kr رقم در هر ثانیه خواهد بود و پهنای باند انتقال K برابر پهنای باند یک سیگنال کدنشده می‌باشد.
در تبادل برای پهنای باند افزایش یافته، کدگذرای باینری سمبل‌های منبع Mتایی دو مزیت دارد. اول اینکه برای رساندن یک سیگنال باینری که مرکب از تنها دو موج متفاوت است، به سخت‌افزار ساده‌تری نیاز است. دوم آنکه نویز مزاحم تاثیر کمتری بر یک سیگنال باینری دارد تا بر سیگنالی که مرکب از M موج مختلف است.
بنابراین، خطاهای حاصل از نویز کمتری خواهد بود. از این رو این روش کدکردن به صورتی اساسی تکنیکی دیجیتالی برای کاهش نویز در باند عریض می‌باشد. کدگذاری برای کنترل خطاها در جهت کاهش نویز باند عریض فراتر می‌رود. با ضمیمه کردن رقم‌های کنترل اضافی برای هر کلمه کد باینری اکثراً خطاها را می‌توان پیدا و حتی تصحیح کرد. کدینگ کنترل خطا هم پهنای باند و هم پیچیدگی سخت‌افزار را می‌افزاید، اما علی‌رغم نسبت پایین سیگنال به نویز ارتباط دیجیتالی تقریباً بدون خطایی بدست می‌دهد.
اکنون بادرنظر گرفتن جهت مخالف تصور کنید که یک منبع اطلاعاتی باینری داریم و یک سیستم مخابراتی با نسبت سیگنال به نویز کافی، اما پهنای باند محدود. این شرایط بطور مثال در شبکه‌های مخابراتی کامپیوتری که از خط‌های تلفن استفاده می‌کنند، پیش می‌آید.
بلوک‌های کدگذرای K رقم باینری وقتی به عنوان سمبل‌های Mتایی مورد استفاده قرار گیرند، پهنای باند لازم را با ضریب K=log2M کاهش می‌دهند. بدینوسیله نسبت اطلاعاتی افزایش یافته‌ای روی یک کانال با پهنای باند محدود امکان‌پذیر می‌شود. یک تکنیک آماری پیچیده‌تر به نام «کدکردن منبع» ممکن است نیاز به پهنای باند کمتری را امکان‌پذیر نماید.
نهایتاً فایده‌های کدکردن دیجیتالی را می‌توان در مخابرات آنالوگ با کمک یک روش تبدیل آنالوگ به دیجیتال همچون مدولاسیون پالس کد (PCM) بیان کرد. یک سیگنال PCM، با نمونه‌برداری از پیام آنالوگ و تبدیل آنها به (کوآنتیزه کردن) مقادیر نمونه، تولید می‌شود. PCM با توجه به قابلیت اتکاء، روانی و کارایی انتقال دیجیتالی به روش مهمی برای مخابرات آنالوگ تبدیل شده است. علاوه بر این هنگامی که PCM با میکروپروسسور با سرعت بالا همراه شود، جانشین ساختن پردازش سیگنال دیجیتال به جای آنالوگ را امکان‌پذیر می‌سازد.

 

 

 


تکنیک‌های مدولاسیون
مفهوم اساس مدولاسیون و دمدولاسیون
عمل الکتریکی یا الکترونیکی که معمولاً مدولاسیون می‌نامیم، شکلی از ضرب کردن یک سیگنال در سیگنال دیگر است. چون ضرب یک تابع زمانی در تایع زمانی دیگر عملی غیرخطی است و بدلیل اینکه همه سیگنال‌ها به شکل تابع زمانی قابل تعریف‌اند، پس مدولاسیون عملی غیزخطی است.
حتی وقتی که اصطلاح مدوله‌کننده خطی بهکار رود، عمل آشکارسازی یا دمدولاسیون نیز که اکنون خواهیم دید، به همین ترتیب دسته‌بندی می‌شود، بجز آنکه ممکن است سیگنالی در خودش ضرب شود. در روش‌های ضرب سیگنال‌ها، در هم اختلافات زیادی وجود دارد و این باعث بوجود آمدن انواع روش‌های مختلف مدولاسیون می‌شود که طی سال‌ها پی‌ریزی شده است.

 

مدولاسیون دامنه‌ای (AM)، تک‌باند کناری (SSB)، دو باند کناری با حذف عامل (DSB-SC) و تک باند دانباله‌دار (VSB)
یکی از قدیمی‌ترین شکل‌های مدولاسیون و یکی از متداولترین آنها که امروزه به کار می‌رود، مدولاسیون دامنه‌ای است. امروزه این روش بطور عادی از ضرب یک عبارت شامل جمع سیگنال اطلاعات و یک مقدار ثابت در سیگنالی دارای فرکانس بسیار بزرگتر بنام سیگنال حامل بدست می‌آید.
برای مثال:
سیگنال اطلاعات با حداکثر فرکانس:
سیگنال حامل:
که است. پس سیگنال مدوله شده خروجی از رابطه زیر بدست می‌آید:

که را پیک شاخص مدولاسیون AM گویند. به عنوان مثال، فرض کنید یک سیگنال تون ساده صوتی باشد و باشد. پس:

از رابطه بالا می‌بینیم که حاصل ضرب سیگنال اطلاع و یک مقدار ثابت از سیگنال حامل سه مولفه سینوسی تولید می‌کند که ما آنها را حامل، باند کناری پائین و باند کناری بالا می‌نامیم.
اگر به منحنی دامنه این سیگنال‌ها بر حسب فرکانس نگاه کنیم، می‌بینیم که طیف Sc(t) شبیه شکل زیر است. وقتی است، می‌گوئیم مدولاسیون پیک 100% داریم.

 

 

 


شکل1: طیف یک سیگنال AM با مدولاسیون 100% و یک سیگنال سینوسی
اگر کمتر از یک باشد، می‌گودیم مدولاسیون کمتر از 100% داریم. اگر این ضرب را رابطه قبل عمل کنیم، نشان می‌دهد که مولفه حامل با دامنه A ثابت می‌ماند، ولی دو باند کناری به نسبت کاهش می‌یابند.

 

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  44  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید

 


دانلود با لینک مستقیم


دانلودمقاله مدولاسیون AM

کنترل دور موتور سنکرون با مدولاسیون پهنای باند SVPWM

اختصاصی از فی دوو کنترل دور موتور سنکرون با مدولاسیون پهنای باند SVPWM دانلود با لینک مستقیم و پر سرعت .

کنترل دور موتور سنکرون با مدولاسیون پهنای باند SVPWM


کنترل دور موتور سنکرون با مدولاسیون پهنای باند SVPWM

برای شبیه سازی این مقاله از موتور سنکرون مغناطیس دایم با استفاده از استراتژی کنترل هدفمند شار روتور با استفاده از رویتگر مد لغزشی استفاده شده است و شبیه سازی در این روش با استفاده از نرم افزار سیمولینک در متلب استفاده شده است  در این مقاله از کنترل برداری SVPWM برای تبدیل ولتاژ DC به پالس های مرتب شده و برای روشن و خاموش کردن وسایل سوئیچینگ نیمه هادی استفاده شده است و به تبدیل فرکانس می توان رسید و رگولاسیون ولتاژ و حذف هارمونیک ها در این روش کنترلی مورد استفاده قرار می گیرد .و هدف کنترلی SVPWM  در این جا شار مغناطیسی یکی از پارامترهای مهم در سیستم کنترلی می باشد .


دانلود با لینک مستقیم


کنترل دور موتور سنکرون با مدولاسیون پهنای باند SVPWM

مقاله : مدولاسیون قطبش‎ در فیبر نوری

اختصاصی از فی دوو مقاله : مدولاسیون قطبش‎ در فیبر نوری دانلود با لینک مستقیم و پر سرعت .

مقاله : مدولاسیون قطبش‎ در فیبر نوری


مقاله : مدولاسیون قطبش‎ در فیبر نوری

عنوان مقاله : مدولاسیون قطبش‎ در فیبر نوری

 

شرح مختصر : دردنیای امروز زندگی ما وابستگی شدیدی به ارتباطات دارد که این امر به نوبه خود نیاز رو به رشد بشر به گسترش شبکه های رایانه ای را بدنبال دارد.در مدل مرجع OSI برای لایه فیزیکی شبکه های رایانه ای نیازمند رسانه یا کانال انتقال هستیم ،که انواع مختلفی دارد،از قبیل :کابل مسی کواکسیال ،زوج به هم تابیده ،هوا و فیبر نوری . در سال های اخیر بنابر مزیت های بسیار زیادی که فیبر نوری نسبت به دیگر انواع دارد ،در قسمت بک بون شبکه استفاده از این مدیا رواج چشمگیری یافته است.

فهرست :

مقدمه

انواع مدولاسیون

مدولاسیون قطبش

انواع قطبش

روشهای تبدیل نور طبیعی به نور قطبیده خطی

تئوری مدولاسیون قطبی در فیبر نوری

نتیجه گیری

منایع


دانلود با لینک مستقیم


مقاله : مدولاسیون قطبش‎ در فیبر نوری