فی دوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی دوو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پروژه مدل سازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع. doc

اختصاصی از فی دوو پروژه مدل سازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع. doc دانلود با لینک مستقیم و پر سرعت .

پروژه مدل سازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع. doc


پروژه مدل سازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع. doc

 

 

 

 

 

 

 

نوع فایل: word

قابل ویرایش 143 صفحه

 

چکیده:

در سالهای اخیر، مسایل جدی کیفیت توان در ارتباط با افت ولتاژهای ایجاد شده توسط تجهیزات و مشتریان، مطرح شده است، که بدلیل شدت استفاده از تجهیزات الکترونیکی حساس در فرآیند اتوماسیون است. وقتی که دامنه و مدت افت ولتاژ، از آستانه حساسیت تجهیزات مشتریان فراتر رود ، ممکن است این تجهیزات درست کار نکند، و موجب توقف تولید و هزینه ی قابل توجه مربوطه گردد. بنابراین فهم ویژگیهای افت ولتاژها در پایانه های تجهیزات لازم است. افت ولتاژها عمدتاً بوسیله خطاهای متقارن یا نامتقارن در سیستمهای انتقال یا توزیع ایجاد می شود. خطاها در سیستمهای توزیع معمولاً تنها باعث افت ولتاژهایی در باسهای مشتریان محلی می شود. تعداد و ویژگیهای افت ولتاژها که بعنوان عملکرد افت ولتاژها در باسهای مشتریان شناخته می شود، ممکن است با یکدیگر و با توجه به مکان اصلی خطاها فرق کند. تفاوت در عملکرد افت ولتاژها  یعنی، دامنه و بویژه نسبت زاویه فاز، نتیجه انتشار افت ولتاژها از مکانهای اصلی خطا به باسهای دیگر است. انتشار افت ولتاژها از طریق اتصالات متنوع ترانسفورماتورها، منجر به عملکرد متفاوت افت ولتاژها در طرف ثانویه ترانسفورماتورها می شود. معمولاً، انتشار افت ولتاژ بصورت جریان یافتن افت ولتاژها از سطح ولتاژ بالاتر به سطح ولتاژ پایین تر تعریف می شود. بواسطه امپدانس ترانسفورماتور کاهنده، انتشار در جهت معکوس، چشمگیر نخواهد بود. عملکرد افت ولتاژها در باسهای مشتریان را با مونیتورینگ یا اطلاعات آماری می توان ارزیابی کرد. هر چند ممکن است این عملکرد در پایانه های تجهیزات، بواسطه اتصالات سیم پیچهای ترانسفورماتور مورد استفاده در ورودی کارخانه، دوباره تغییر کند. بنابراین، لازم است بصورت ویژه انتشار افت ولتاژ از باسها به تاسیسات کارخانه از طریق اتصالات متفاوت ترانسفورماتور سرویس دهنده، مورد مطالعه قرار گیرد. این پایان نامه با طبقه بندی انواع گروههای برداری ترانسفورماتور و اتصالات آن و همچنین دسته بندی خطاهای متقارن و نامتقارن به هفت گروه، نحوه انتشار این گروهها را از طریق ترانسفورماتورها با مدلسازی و شبیه سازی انواع اتصالات سیم پیچها بررسی می کند و در نهایت نتایج را ارایه می نماید و این بررسی در شبکه تست چهارده باس IEEE برای چند مورد تایید می شود.

 

مقدمه:

یکی از ضعیفترین عناصر نرم افزارهای مدرن شبیه سازی، مدل ترانسفورماتور است و فرصتهای زیادی برای بهبود شبیه سازی رفتارهای پیچیده ترانسفورماتور وجود دارد، که شامل اشباع هسته مغناطیسی، وابستگی فرکانسی، تزویج خازنی، و تصحیح ساختاری هسته و ساختار سیم پیچی است.

مدل ترانسفورماتور بواسطه فراوانی طراحیهای هسته و همچنین به دلیل اینکه برخی از پارامترهای ترانسفورماتور هم غیر خطی و هم به فرکانس وابسته اند، می تواند بسیار پیچیده باشد. ویژگیهای فیزیکی رفتاری که، با در نظر گرفتن فرکانس، لازم است برای یک مدل ترانسفورماتور بدرستی ارائه شود عبارتند از:

پیکربندیهای هسته و سیم پیچی،

اندوکتانسهای خودی و متقابل بین سیم پیچها،

شارهای نشتی،

اثر پوستی و اثر مجاورت در سیم پیچها،

اشباع هسته مغناطیسی،

هیسترزیس و تلفات جریان گردابی در هسته،

و اثرات خازنی.

مدلهایی با پیچیدگیهای مختلف در نرم افزارهای گذرا برای شبیه سازی رفتار گذرای ترانسفورماتورها، پیاده سازی شده است. این فصل یک مرور بر مدلهای ترانسفورماتور، برای شبیه سازی پدیده های گذرا که کمتر از رزونانس سیم پیچ اولیه (چند کیلو هرتز) است، می باشد، که شامل فرورزونانس، اکثر گذراهای کلیدزنی، و اثر متقابل هارمونیکها است.

 

فهرست مطالب:

1-1 مقدمه

1-2 مدلهای ترانسفورماتور

1-2-1 معرفی مدل ماتریسی Matrix Representation (BCTRAN Model)

1-2-2 مدل ترانسفورماتور قابل اشباع  Saturable Transformer Component (STC Model)

1-2-3 مدلهای بر مبنای توپولوژی Topology-Based Models

2- مدلسازی ترانسفورماتور

2-1 مقدمه

2-2 ترانسفورماتور ایده آل

2-3 معادلات شار نشتی

2-4 معادلات ولتاژ

2-5 ارائه مدار معادل

2-6 مدلسازی ترانسفورماتور دو سیم پیچه

2-7 شرایط پایانه ها (ترمینالها)

2-8 وارد کردن اشباع هسته به شبیه سازی

2-8-1 روشهای وارد کردن اثرات اشباع هسته

2-8-2 شبیه سازی رابطه بین  و 

2-9 منحنی اشباع با مقادیر لحظهای

2-9-1 استخراج منحنی مغناطیس کنندگی مدار باز با مقادیر لحظهای

2-9-2 بدست آوردن ضرایب معادله انتگرالی

2-10 خطای استفاده از منحنی مدار باز با مقادیر RMS

2-11 شبیه سازی ترانسفورماتور پنج ستونی در حوزه زمان

2-11-1 حل عددی معادلات دیفرانسیل

2-12 روشهای آزموده شده برای حل همزمان معادلات دیفرانسیل

3- انواع خطاهای نامتقارن و اثر اتصالات ترانسفورماتور روی آن

3-1 مقدمه

3-2 دامنه افت ولتاژ

3-3 مدت افت ولتاژ

3-4 اتصالات سیم پیچی ترانس

3-5 انتقال افت ولتاژها از طریق ترانسفورماتور

3-5-1- خطای تکفاز، بار با اتصال ستاره، بدون ترانسفورماتور

3-5-2- خطای تکفاز، بار با اتصال مثلث، بدون ترانسفورماتور

3-5-3- خطای تکفاز، بار با اتصال ستاره، ترانسفورماتور نوع دوم

3-5-4- خطای تکفاز، بار با اتصال مثلث، ترانسفورماتور نوع دوم

3-5-5- خطای تکفاز، بار با اتصال ستاره، ترانسفورماتور نوع سوم

3-5-6- خطای تکفاز، بار با اتصال مثلث، ترانسفورماتور نوع سوم

3-5-7- خطای دو فاز به هم، بار با اتصال ستاره، بدون ترانسفورماتور

3-5-8- خطای دو فاز به هم، بار با اتصال مثلث، بدون ترانسفورماتور

3-5-9- خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع دوم

3-5-10- خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع دوم

3-5-11- خطای دو فاز به هم، بار با اتصال ستاره، ترانسفورماتور نوع سوم

3-5-12- خطای دو فاز به هم، بار با اتصال مثلث، ترانسفورماتور نوع سوم

3-5-13- خطاهای دو فاز به زمین

3-6 جمعبندی انواع خطاها

3-7 خطای TYPE A ، ترانسفورماتور DD

3-8 خطای TYPE B ، ترانسفورماتور DD

3-9 خطای TYPE C ، ترانسفورماتور DD

3-10 خطاهای TYPE D و TYPE F و TYPE G ، ترانسفورماتور DD

3-11 خطای TYPE E ، ترانسفورماتور DD

3-12 خطاهای نامتقارن ، ترانسفورماتور YY

3-13 خطاهای نامتقارن ، ترانسفورماتور YGYG

3-14 خطای TYPE A ، ترانسفورماتور DY

3-15 خطای TYPE B ، ترانسفورماتور DY

3-16 خطای TYPE C ، ترانسفورماتور DY

3-17 خطای TYPE D ، ترانسفورماتور DY

3-18 خطای TYPE E ، ترانسفورماتور DY

3-19 خطای TYPE F ، ترانسفورماتور DY

3-20 خطای TYPE G ، ترانسفورماتور DY

3-21 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای TYPE A شبیه سازی با PSCA

شبیه سازی با برنامه نوشته شده

3-22 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای TYPE B شبیه سازی با PSCA

شبیه سازی با برنامه نوشته شده

3-23 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای TYPE C شبیه سازی با PSCA

شبیه سازی با برنامه نوشته شده

3-24 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای TYPE D شبیه سازی با PSCA

شبیه سازی با برنامه نوشته شده

3-25 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای  TYPE E شبیه سازی با PSCA

شبیه سازی با برنامه نوشته شده

3-26 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای TYPE F شبیه سازی با PSCAD

شبیه سازی با برنامه نوشته شده

3-27 شکل موجهای ولتاژ – جریان ترانسفورماتور پنج ستونی برای خطای TYPE G شبیه سازی با PSCA

شبیه سازی با برنامه نوشته شده

3-28 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای TYPE D در باس 5

3-29 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای TYPE G در باس 5

3-30 شکل موجهای ولتاژ – جریان چند باس شبکه 14 باس IEEE برای خطای TYPE A در باس 5

4- نتیجه گیری و پیشنهادات

مراجع

 

فهرست شکل ها:

شکل (1-1) مدل ماتریسی ترانسفورماتور با اضافه کردن اثر هسته

شکل (1-2) ) مدار ستاره ی مدل ترانسفورماتور قابل اشباع

شکل (1-3) ترانسفورماتور زرهی تک فاز

شکل (1-4) مدار الکتریکی معادل شکل (1-3)

شکل (2-1) ترانسفورماتور

شکل (2-2) ترانسفورماتور ایده ال

شکل (2-3) ترانسفورماتور ایده ال بل بار

شکل (2-4) ترانسفورماتور با مولفه های شار پیوندی و نشتی

شکل (2-5) مدرا معادل ترانسفورماتور

شکل (2-6) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه

شکل (2-7) ترکیب RL موازی

شکل (2-8) ترکیب RC موازی

شکل (2-9) منحنی مغناطیس کنندگی مدار باز ترانسفورماتور

شکل (2-10) رابطه بین   و             

شکل (2-11) دیاگرام شبیه سازی یک ترانسفورماتور دو سیم پیچه با اثر اشباع

شکل (2-12) رابطه بین  و  

شکل (2-13) رابطه بین  و  

شکل (2-14) منحنی مدار باز با مقادیر  rms

شکل (2-15) شار پیوندی متناظر شکل (2-14) سینوسی

شکل (2-16) جریان لحظه ای متناظر با تحریک ولتاژ سینوسی

شکل (2-17) منحنی مدار باز با مقادیر لحظه ای

شکل (2-18) منحنی مدار باز با مقادیر rms

شکل (2-19) میزان خطای استفاده از منحنی rms 

شکل (2-20) میزان خطای استفاده از منحنی لحظه ای

شکل (2-21) مدار معادل مغناطیسی ترانسفورماتور سه فاز سه ستونه

شکل (2-22) مدار معادل الکتریکی ترانسفورماتور سه فاز سه ستونه

شکل (2-23) مدار معادل مغناطیسی ترانسفورماتور سه فاز پنج ستونه

شکل (2-24) ترانسفورماتور پنج ستونه

شکل (2-25) انتگرالگیری در یک استپ زمانی به روش اولر

شکل (2-26) انتگرالگیری در یک استپ زمانی به روش trapezoidal

شکل (3-1) دیاگرام فازوری خطاها

شکل (3-2) شکل موج ولتاژ Vab

شکل (3-3)  شکل موج ولتاژ Vbc

شکل (3-4) شکل موج ولتاژ Vca

شکل (3-5)  شکل موج ولتاژ Vab

شکل (3-6) شکل موج جریان iA

شکل (3-7) شکل موج جریان iB

شکل (3-8) شکل موج جریان iA

شکل (3-9) شکل موج جریان iA

شکل (3-10)  شکل موجهای ولتاژ Va , Vb , Vc

شکل (3-11)  شکل موجهای ولتاژ Va , Vb , Vc

شکل (3-12)  شکل موجهای جریان ia , ib , ic

شکل (3-13)  شکل موجهای ولتاژ Va , Vb , Vc

شکل (3-14)  شکل موجهای ولتاژ Va , Vb , Vc

شکل (3-15)  شکل موجهای جریان , iB iA

شکل (3-16)  شکل موج جریان iA

شکل (3-16)  شکل موج جریان iB

شکل (3-17)  شکل موج جریان iC

شکل (3-18)  شکل موجهای ولتاژ Va , Vb , Vc

شکل (3-19)  شکل موجهای جریان ia , ib , ic

شکل (3-20)  شکل موجهای ولتاژ Va , Vb , Vc

شکل (3-21)  شکل موجهای جریان ia , ib , ic

شکل (3-22)  شکل موجهای جریان ia , ib , ic

شکل (3-23) شکل موج ولتاژ Va

شکل (3-24) شکل موج ولتاژ Vb

شکل (3-25) شکل موج ولتاژ Vc

شکل (3-26) شکل موج جریانiA

شکل (3-27) شکل موج جریان iB

شکل (3-28) شکل موج جریان iC

شکل (3-29) شکل موج جریانiA

شکل (3-30) شکل موج جریان iB

شکل (3-31) موج جریان iC

شکل (3-32) شکل موج جریانiA

شکل (3-33) شکل موج جریان iB

شکل (3-34) شکل موج جریان iC

شکل (3-35) شکل موج ولتاژ Va

شکل (3-36) شکل موج ولتاژ Vb

شکل (3-37) شکل موج ولتاژ Vc

شکل (3-38) شکل موج جریانiA

شکل (3-39) شکل موج جریان iB

شکل (3-40) شکل موج جریان iC

شکل (3-41) شکل موج جریانiA

شکل (3-42) شکل موج جریان iB

شکل (3-43) شکل موج جریان iC

شکل (3-44) شکل موج ولتاژ Va

شکل (3-45) شکل موج ولتاژ Vb

شکل (3-46) شکل موج ولتاژ Vc

شکل (3-47) شکل موج جریانiA

شکل (3-48) شکل موج جریان iB

شکل (3-49) شکل موج جریان iC

شکل (3-50) شکل موج جریانiA

شکل (3-51) شکل موج جریان iB

شکل (3-52) شکل موج جریان iC

شکل (3-53) شکل موج ولتاژ Va

شکل (3-54) شکل موج ولتاژ Vb

شکل (3-55) شکل موج ولتاژ Vc

شکل (3-56) شکل موج جریانiA

شکل (3-57) شکل موج جریان iB

شکل (3-58) شکل موج جریان iC

شکل (3-59) شکل موج جریانiA

شکل (3-60)  شکل موج جریان iB

شکل (3-61) شکل موج جریان iC

شکل (3-62) شکل موج ولتاژ Va

شکل (3-63) شکل موج ولتاژ Vb

شکل (3-64) شکل موج ولتاژ Vc

شکل (3-65) شکل موج جریانiA

شکل (3-66) شکل موج جریان iB

شکل (3-67) شکل موج جریان iC

شکل (3-68) شکل موج جریانiA

شکل (3-69) شکل موج جریان iB

شکل (3-70) شکل موج جریان iC

شکل (3-71) شکل موج ولتاژ Va

شکل (3-72)  شکل موج ولتاژ Vb

شکل (3-73) شکل موج ولتاژ Vc

شکل (3-74) شکل موج جریانiA

شکل (3-75) شکل موج جریان iB

شکل (3-76) شکل موج جریان iC

شکل (3-77) شکل موج جریانiA

شکل (3-78) شکل موج جریان iB

شکل (3-79) شکل موج جریان iC

شکل (3-80) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-81) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-82) شکل موجهای جریان) (kV با PSCAD

شکل (3-83) شکل موجهای جریان) (kV با PSCAD

شکل (3-84) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-85) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-86) شکل موجهای جریان با برنامه نوشته شده

شکل (3-87) شکل موجهای جریان با برنامه نوشته شده

شکل (3-88) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-89) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-90) شکل موجهای جریان) (kV با PSCAD

شکل (3-91) شکل موجهای جریان) (kV با PSCAD

شکل (3-92) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-93) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-94) شکل موجهای جریان با برنامه نوشته شده

شکل (3-95) شکل موجهای جریان با برنامه نوشته شده

شکل (3-96) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-97) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-98) شکل موجهای جریان) (kV با PSCAD

شکل (3-99) شکل موجهای جریان) (kV با PSCAD

شکل (3-100) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-101) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-102) شکل موجهای جریان با برنامه نوشته شده

شکل (3-103) شکل موجهای جریان با برنامه نوشته شده

شکل (3-104) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-105) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-106) شکل موجهای جریان) (kV با PSCAD

شکل (3-107) شکل موجهای جریان) (kV با PSCAD

شکل (3-108) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-109) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-110) شکل موجهای جریان با برنامه نوشته شده

شکل (3-111) شکل موجهای جریان با برنامه نوشته شده

شکل (3-112) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-113) شکل موجهای ولتاژ) (kV با PSCAD

 شکل (3-114) شکل موجهای جریان) (kV با PSCAD

شکل (3-115) شکل موجهای جریان) (kV با PSCAD

شکل (3-116) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-117) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-118) شکل موجهای جریان با برنامه نوشته شده

شکل (3-119) شکل موجهای جریان با برنامه نوشته شده

شکل (3-120) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-121) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-122) شکل موجهای جریان) (kV با PSCAD

شکل (3-123) شکل موجهای جریان) (kV با PSCAD

شکل (3-124) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-125) شکل موجهای ولتاژ با برنامه نوشته شده

شکل (3-126) شکل موجهای جریان با برنامه نوشته شده

شکل (3-127) شکل موجهای جریان با برنامه نوشته شده

شکل (3-128) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-129) شکل موجهای ولتاژ) (kV با PSCAD

شکل (3-130) شکل موجهای جریان) (

دانلود با لینک مستقیم


پروژه مدل سازی و شبیه سازی اثر اتصالات ترانسفورماتور بر چگونگی انتشار تغییرات ولتاژ در شبکه با در نظر گرفتن اثر اشباع. doc

دانلود تحقیق درمورد آسیب پذیری کابلهای توزیع در محل اتصالات جدا شونده

اختصاصی از فی دوو دانلود تحقیق درمورد آسیب پذیری کابلهای توزیع در محل اتصالات جدا شونده دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق درمورد آسیب پذیری کابلهای توزیع در محل اتصالات جدا شونده


دانلود تحقیق درمورد آسیب پذیری کابلهای توزیع در محل اتصالات جدا شونده

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 1

 

 

آسیب پذیری کابلهای توزیع در محل اتصالات جدا شونده 

شکست الکتریکی اتصالی به هنگام جدا کردن آرنج کابل های توزیع ( اتصالات قابل جدا شدن کابل ها ) از بوشینگ ها و کلاهک های عایقی و همچنین کلید زنی های معمول در بهره برداری که با قطع جریان بار کم یا جریان شارژ کابل توام است ، فراوان اتفاق می افتد. در این میان بویژه وقوع شکست الکتریکی هنگام برداشتن کلاهک های عایقی، سوال برانگیز است چون اصولا با این کار جریانی قطع نمی شود. به دلیل نزدیکی پرسنل بهره بردار به محل وقوع این نوع اتصالی ها، اهمیت و خطر مسأله مورد توجه می باشد. همچنین قطع برق مشترکین و صرف هزینه های لازم برای تعویض قطعات و زمان گروه تعمیرات، از دیگر نتایج منفی این نوع خطاها به حساب می آیند. کارشناسان دلیل اصلی شکست الکتریکی مزبور را ناشی از پدیده خلاء جزئی می دانند. برداشتن کلاهک عایقی، یا اتصال جداشونده ( آرنج ) حجم هوای داخل آرنج کابل را افزایش میدهد، این امر باعث ایجاد خلاء جزئی می شود که قدرت دی الکتریک هوا را کاهش می دهد. در این راستا سازندگان معروف با تجدیدنظر در طراحی بعضی از اجزاء نسبت به کاهش اثر پدیده خلاء جزئی اقدام کرده اند.

گروه تحقیق، بهره برداری و آزمایش سیستم های توزیع (Dstar)، مجموعه تحقیقات و آزمایشهایی را از سال 1995 در زمینه شناخت دلائل اینگونه اتصالی ها آغاز کرده است. بعضی از شکست ها در شرایطی رخ داده اند که در آنها تئوری خلاء جزئی قابل توجیه نیست. از جمله در مواردی شکست الکتریکی بعد از جدا شدن آرنج از بوشینگ و در شرایطی که میزان خطا جزئی در حد فاصل دو قطعه یکسان بوده، رخ داده است. از این رو بدلیل مخفی ماندن دلایل ریشه ای و اصلی وقوع این جرقه ها و شکست ها، باید اطلاعات بیشتری از عملکرد قطعه بدست آید.

بر این اساس  Dstar یک پروژه دو ساله را به منظور جمع آوری و پردازش گزارش های مربوط به نقص اتصالات جدا شونده در کابلها به مورد اجراء گذاشته است. در این راستا یک فرم مخصوص در وب سایت شرکت   Dstar  www.dstar.org  قرار داده شده است تا شرکت های برق با وارد کردن اطلاعات و تجربیات عملی خود در زمینه نقص اتصالات مذکور، در انجام این پروژه، سهیم شوند.

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود تحقیق درمورد آسیب پذیری کابلهای توزیع در محل اتصالات جدا شونده

دانلود تحقیق اتصالات موقت ‌

اختصاصی از فی دوو دانلود تحقیق اتصالات موقت ‌ دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق اتصالات موقت ‌


دانلود تحقیق اتصالات موقت ‌

 

تعداد صفحات : 21 صفحه         -           

قالب بندی :  word           

 

 

 

اتصالات موقت ‌

1 ـ پیچ ها

تعریف پیچ : پیچ قطعه استوانه ای است که بر سطح استوانه آن شیاری مارپیچ ایجاد شده است. و  از آن برای اتصال قطعات به کمک مهره استفاده می شود البته برخی اوقات با حدیده کردن قطعه بدون کمک مهره نیز می توان اتصال را عملی کرد. به طور کلی از پیچ برای بستن قطعاتی استفاده می شود که بتوان به سهولت از هم جدا کرد. از پیچ همچنین برای ایجاد نیروی طولی زیاد در پرسها و گیره ها و برای تبدیل حرکت دورانی به حرکت مستقیم در ماشین تراش و … استفاده می گردد.

2 ـ معرفی قسمتهای مختلف پیچ : پیچ شامل دو قسمت اصلی سر و بدنه می باشد. سرپیچ به اشکال مختلف از قبیل شش گوش ، گرد ، عدسی ، خزینه ای ، استوانه ای و شش گوش و چهارگوش داخلی (آلن) تولید می شود که آچارها می توانند با آن درگیر شوند. قسمت بدنه پیچ استوانه أی شکل است و روی سطح جانبی آن دنده کاری شده است. دنده کاری نیز عبارت از ایجاد شیارهایی به صورت مارپیچی است . شیارها به صورت مثلث ، مربع ، ذوذنقه و نیم دایره بر روی سطح جانبی بدنه ایجاد می شوند.

یک دنده پیچ عبارت است از مسیر مارپیچی که بر روی استوانه پیچ قرار دارد که اگر استوانه را گسترش دهیم متوجه می شویم که یک دنده یا مارپیچ عبارت از وتر مثلث قائم الزاویه ای است با قاعده برابر محیط دایره و ارتفاعی معادل گام است . این ارتفاع عبارت از فاصله ای است که در یک دور کامل بر روی سطح جانبی استوانه بوجود می آید و گام پیچ نامیده می شود.

در مثلث قائم الزاویه  ی بالا زاویه قاعده و وتر مثلث زاویه مارپیچ نامیده می شود و تانژانت این زاویه را شیب مارپیچ می گویند.

چنانچه جهت صعود مارپیچ روی قسمت مرئی استوانه با محور قائم از چپ به راست باشد پیچ راست گرد است و اگر از راست به چپ باشد پیچ چپ گرد است.

در پیچ راست گرد برای باز کردن مهره لازم است آن را در جهت خلاف عقربه های ساعت بچرخانیم . دنده کاری در پیچها ممکن است یک راهه و یا چند راهه باشد پیچی را که مارپیچهای آن فقط از تراش یک مارپیچ ساخته شده باشد پیچ یک راهه گویند. در صورتی که پیچ چند راهه عبارت از پیچی است که مارپیچ های آن از تراش چندین مارپیچ به موازات هم به وجود آمده باشد. در پیچهای چند راهه چون معمولاً شیب دنده ها زیاد است از آنها برای کورس زیاد و نیروی کم استفاده می شود.

مشخصات پیچها ، معمولاً با ابعاد و گام پیچ تعیین می شوند.

الف) پیچها به کمک ابعادشان که عبارت از قطر بزرگتر ، قطر کوچکتر ، گام پیچ و طول قسمت دنده کاری است مشخص می شوند.

ـ قطر بزرگتر عبارت از قطر اصلی و قطر خارجی پیچ است که می توان آن را توسط کولیس اندازه گرفت . این قطر با حرف d نشان داده می شود.

ـ قطر کوچکتر عبارت از قطر داخلی یا هسته مرکزی پیچ می باشد که تحت تراش قرار نگرفته است . این قطر با حرف d1  نشان داده می شود.

ـ گام پیچ عبارت از مقدار طولی است که پیچ در یک دور گردش بالا یا پایین می رود. این طول مساوی فاصله دو دنده مجاور هم در پیچ یک راهه است و با حرف p نشان داده می شود.

ـ طول پیچ ، طول قسمت استوانه ای است ‌که در زیر سر پیچ قرار دارد . طول پیچ با قطر آن تناسب دارد.

معرفی انواع پیچها :

پیچها را از نظر شکل و پروفیل دنده به انواع مختلفی تقسیم می کنند که عبارت اند از :

1ـ دنده مثلثی که بیشتر از انواع دیگر متداول است و دارای مقاومت خوب برای اتصالهای مکانیکی می باشد.

2ـ دنده مربع که برای اتصالات دایم و تحت فشار بکار می رود.

3ـ دنده ذوزنقه ای که برای انتقال حرکت و نیرو مورد استفاده واقع می شود.

4ـ دنده اره ای که شکل دنده های آن ذوزنقه قائم الزاویه است و برای انتقال حرکت و نیرو در یک جهت بکار می رود.

5ـ دنده گرد که برای قطعاتی که در معرض ضربه قرار می گیرند مورد استفاده قرار  می گیرد.

انواع فرم و پروفیل دنده های پیچها در شکل زیر به منظور مقایسه نشان داده شده است. پیچها از نظر شکل و پروفیل دنده ها دارای استانداردهای مختلفی هستند که عبارت اند از: پیچهای بین المللی متری ، پیچهای اینچی ، پیچهای لوله اینچی و پیچهای مخصوص .


دانلود با لینک مستقیم


دانلود تحقیق اتصالات موقت ‌