به آسانی وبا خواندن یک فایل آموزشی شروع به دوباره پیچی (تجدید سیم پیچی ) الکتروموتور های سه فاز وتکفاز معیوب کنید .
pdf آموزش سیم پیچی موتور های القایی
به آسانی وبا خواندن یک فایل آموزشی شروع به دوباره پیچی (تجدید سیم پیچی ) الکتروموتور های سه فاز وتکفاز معیوب کنید .
ﮔﺰارش ﺣﺎﺿﺮ ﻣﻄﺎﻟﻌﺎت اﻣﮑﺎن ﺳﻨﺠﯽ ﻣﻘﺪﻣﺎﺗﯽ ﺗﻮﻟﯿﺪ اﻧﺠﯿﻦ ﻣﻮﺗﻮرﺳﯿﮑﻠﺖ ﻣـﯽ ﺑﺎﺷـد.اﯾـﻦ ﻣﻄﺎﻟﻌـﺎت در ﻗﺎﻟـﺐ ﻣﺘﺪوﻟﻮژی ﻣﻄﺎﻟﻌﺎت اﻣﮑﺎن اﺑﺘﺪا ﻣﺤﺼﻮل ﻣﻮرد ﻣﻄﺎﻟﻌﻪ ﺑـﻪ ﻃـﻮر،ﺳﻨﺠﯽ ﺗﻬﯿﻪ ﮔﺮدﯾﺪه اﺳﺖ و ﻣﻄﺎﺑﻖ ﻣﺘﺪوﻟﻮژی ﻓﻮق دﻗﯿﻖ ﻣﻌﺮﻓﯽ ﺷﺪه و ﺳﭙﺲ ﺑﺮرﺳﯽ ﻫﺎی ﻻزم روی ﺑﺎزار آن ﺻـﻮرت ﺧﻮاﻫـﺪ ﮔﺮﻓـﺖ و در اداﻣـﻪ ﻣﻄﺎﻟﻌـﺎت ﻓﻨـﯽ در ﺧﺼﻮص ﭼﮕﻮﻧﮕﯽ ﺗﻮﻟﯿﺪ و اﻣﮑﺎﻧﺎت ﺳﺨﺖ و ﻧﺮم اﻓﺰاری ﻣﻮرد ﻧﯿﺎز ﻧﯿﺰ ﺷﻨﺎﺳـﺎﯾﯽ ﺷـﺪه و درﻧﻬﺎﯾـﺖ ﻇﺮﻓﯿـﺖﻫـﺎی اﻗﺘﺼﺎدی و ﺣﺠﻢ ﺳﺮﻣﺎﯾﻪ ﮔﺬاری ﻣﻮرد ﻧﯿﺎز ﺑﺮای اﺟﺮای ﻃﺮح ﺑﺮآورد و اراﺋﻪ ﺧﻮاﻫﺪ ﺷﺪ ﺗﺎ ﺑﺎ اﺳـﺘﻔﺎده از آن ﺳـﺮﻣﺎﯾﻪ ﮔﺬران و ﻋﻼﻗﻪ ﻣﻨﺪان ﻣﺤﺘﺮم ﺑﺘﻮاﻧﻨﺪ ﮐﻠﯿﻪ اﻃﻼﻋﺎت ﻣﻮرد ﻧﯿﺎز را ﮐﺴﺐ و در ﺟﻬﺖ اﻧﺠﺎم ﺳﺮﻣﺎﯾﻪ ﮔﺬاری اﻗﺘﺼﺎدی ﺑﺎ دﯾﺪ ﺑﺎز و ﻣﺴﯿﺮ ﺷﻔﺎف اﻗﺪام ﻧﻤﺎﯾﻨﺪ. اﻣﯿﺪ اﺳﺖ اﯾﻦ ﻣﻄﺎﻟﻌﺎت ﮐﻤﮑـﯽ ﻫﺮﭼﻨـﺪ ﮐﻮﭼـﮏ در راﺳـﺘﺎی ﺗﻮﺳـﻌﻪ ﺻـﻨﻌﺘﯽ ﮐﺸﻮرﻣﺎن ﺑﻌﻤﻞ ﺑﯿﺎورد.فیل odf به صورت زیپ شده در 66 صفحه.دانلود طرح تولید انجین موتور سیکیلت
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل: Word (قابل ویرایش و آماده پرینت)
تعداد صفحه :23
بخشی از متن مقاله
یک شرکت تخصصی بدنه و قطعات خودرو به نام شرکت ((می فلاور)) ابداع کرده است که می تواند حجم وضریب کمپرس خود را در حین کارکرد تغییر دهد . این طرح کهe3 نام گرفته است هنوز در مراحل آغازین قرار دارد اما یک نمونه تک سیلندر آن مورد آزمایش قرار گرفته تا مشخص شود که آیا این طرح می تواند باعث کاهش مصرف سوخت و آلودگی هوا شود تا در صورت مثبت بودن نتایج به تولید نمونه های واقعی اقدام شود .
قابلیت تنظیم حجم و ضریب کمپرس موتور بدان معنی است که موتور می تواند خود را در هر لحظه با نیاز راننده و همچنین شرایط کارکرد خودرو (سرعت کم ؟ بار زیاد و غیره ) تطبیق دهد . کارشناسان شرکن می فلاور اظهار می دارند در شرایط عادی در 95 در صد موارد موتور فقط با بخشی از کل نیروی خود کار می کند و تنها در شرایط خاصی نیاز به تمام نیروی آن وجود دارد .
در موتور های رایج معمولی ، پیستون از طریق شاتون به میل لنگ متصل است و هنگامی که اتاقک احتراق بالای پیستون توسط سوخت و هوا منجر می شود انرژی آزاد شده ناشی از این انفجار پیستون را در کورس خود به سمت پایین می راند و باعث چرخش میل لنگ می شود . یاتاقانی که شاتون را به میل لنگ متصل می کند در زبان انگلیسی با نام «لنتهای بزرگ» (big - end) شناخته می شود . در موتور e3 رابط دیگری هم بین شاتون و میل لنگ وجود دارد و در واقع دو یاتاقان وظیفه تماس شاتون و میل لنگ را انجام می دهند . با تنظیم زاویه این اتصال در هنگام کارکرد موتور ، پیستون می تواند به میل لنگ نزدیک تر شده و یا از آن دورتر شود و با این عمل کورس پیستون ، به طور موثر تغییر می یابد . با این عمل کورس پیستون به طور موثر تغییر می یابد . با اعمال این تنظیم در حرکت رو به پایین پیستون ، حجم سفید سیلندر تغییر می کند ، بنابراین حجم کل موتور نیز کم یا زیاد می شود . در صورت اعمال این تنظیم بر روی حرکت رو به بالای پیستون می توان ضریب کمپرس موتور را نیز تغییر داد . این تنظیم ها با استفاده از ساز و کاری که هنوز جزئیات آن افشا نشده است و از طریق تغییر وضعیت بلوک هایی که بازوهای اهرم را نگه می دارند انجام می گیرد .
ویژگی منحصر بهفرد این طرح آن است که یاتاقان big – end در این موتور ، دیگر از حرکت دایره ای در موتورهای معمولی پیروی نمی کند بلکه مسیر حرکت آن به صورت بیضی است . شرکت می فلاور ادعا می کند مزیت این طرح آن است که سرعت حرکت پیستون در نقطه مرگ بالا (نقطه انفجار) کاهش یافته و در واقع زمان بیشتری را برای احتراق سوخت فراهم می نماید . چنین سیستم اتصالی باعث افزایش اثر اهرمی شاتون بر میل لنگ شده و در نهایت به افزایش گشتاور موتور منجر می شود . همچنین گفته می شود در نتیجه افزایش زمان احتراق سوخت ، انفجار کاملتر بوده و مصرف سوخت به میزان 40 در صد کاهش می یابد ، ضمن این که باعث کاهش 50 در صدی برخی از گازهای خروجی اگزونیز می گردد .
توربو شارژ و نقش آن در تقویت موتور
یکی از مطمئن ترین راهها برای افزایش توان و اسب بخار موتورها افزایش مقدار هوا و سوختی است که در سیلندر آنها می سوزد . برای این منظور افزودن تعداد سیلندر یا بزرگتر کردن هر یک از سیلندرها یکی از روشهاست . اما در بعضی از مواقع این کار امکانپذیر نیست . یک راه دیگر برای افزایش قدرت که ساده تر و با صرفه تر نیز هست استفاده از توربوو شارژر (Turbo charger) در موتور است . توربو شارژر ها می توانند قدرت و اسب بخار موتور را بدون آن که حجم و وزن آن زیاد شود تقویت کنند و این برترین خصوصیتی است که آنها را تا این حد ارزشمند و مهم کرده است .
امروزه هر جا که صحبت از خودروهای پر قدرت مسابقه ای و سوپر اسپرت می شود ، ناگزیر صحبت از توربوشارژرها نیز به میان می آید . زیرا تمامی این خودروهاحتی خودروهای خانوادگی وسدان های پر قدرت نیز از این وسیله برای افزایش توان موتور سود می برند . توربوشارژرها همچنین در اکثر موتورهای دیزل نیز نقش مهمی بازی می کنند.
یک توربوشارژراز دو قسمت اصلی تشکیل شده است : توربین و کمپرسور ، که توسط یک شفت به هم متصل هستند . این کمپرسور اساساً می تواند به طرق مختلفی به حرکت در آید . از جمله از طریق چرخ دنده که در اینحالت سوپر شارژر مکانیکی نامیده می شود.
روش دیگر به حرمت درآوردن کمپرسور ، استفاده از انرژی ذخیره شده در گازهای اگزوز حاصل از احتراق در موتور است که در این حالت سوپر شارژ مکانیکی نامیده می شود.
روش دیگر به حرکتدر آوردن کمپرسور ، استفاده از انرژی ذخیره شدهدر گازهای اگزوز حاصل از احتراق در موتور است که در این حالت به «توربو شارژ » معروف است .
توربو شارژ در حقیقت توربینی است که به وسیله گازهای اگزوز به حرکت در امده و یک کمپرسور گریز از مرکز را که توسط یک شفت به آن لینک شده است می چرخاند . کمپرسور نیز هوا را از مرکز تیغه هایش به داخل کشیده و توسط پره های خود ، در حین چرخش به بیرون پرتاب می کند .
کمپرسور معمولاً بین صافی و منیفولد هوای ورودی به موتور قرار دارد. در حالی که توربین بین منیفولد هوای خروجی موتور و انباره اگزوز قرار می گیرد . تمامی گازهای خروجی موتور (گازهای اگزوز ) از محفظه توربین می گذرد و انبساط این گازهای تحت فشار بر پره های توربین عمل می کند وموجب حرکتدورانی آنها می شود . این گازهای اگزوز را نیز خفه می کند و به این ترتیب در اکثر مورادی نیازی به استفاده از انباره اگزوز نیست .
تنها توانی که در مجموعه توربین و کمپرسور به هدر می رود مربوط به اصطکاک یاتاقانهای شفت است که بسیار ناچیز است . سرعت توربین در توربو شارژرها تا 150 هزار دور در دقیقه (RPM) بالغ می شود که حدوداً 30 بار سریع تر از دور موتور خودرو است . از انجایی که گازهای اگزوز نیز گرم هستند و به صورت تناوبی وارد می شوند دمای توربین بسیار بالا می رود . به منظور به دست آوردن سرعت 150 هاز دور در دقیقه و بالاتر از ان درموتور شارژرها ، شفت توربین باید با دقت بسیار زیادی یاتاقان بندیشود . اغلب یاتاقانهای غلتشی و بلبرینگ ها در چنین سرعتی از هم گسیخته و نابود می شوند . بنابراین اکثر توربو شارژرها از یاتاقانهای لغزشی روغنی استفاده می کنند . این نوع یاتاقانها ، شفت را در لایه نازکی از روغن که دائماً به اطراف آن پمپ می شود نگه می دارند . این عمل دو هدف را تامین می کند :
به طور معمول توربوشارژرها فشار هوا را به اندازه شش تا هشت پوند بر اینچ (Psi) فشرده تر می کنند . از انجا که فشار معمولی اتمسفر (Psi) 7/14 پوند بر اینچ در سطح دریا است ، خواهیم دید که با این روش می توان 50 ر صد بیشتر هوا وارد موتور کرد. بنابراین انتظار خواهیم داشت به قدرت خودرو نیز 50 درصد افزوده شود . البته افزایش بازدهی واقعی بین 30 تا 40 در صد و بسیار قابل توجه است .
یکی از مزایای ارزشمند توربو شارژرها ، کمکی است که در ارتفاعات و مناطق مرتفع ، که غلظت هوا کم است به موتور می کنند . در ارتفاعات موتورهای معمولی دچار کاهش شدید قدرت می شوند ، زیرا برای هر مکش ، پیستون جرم کمتری از هوا را به داخل سیلندر می کشد و حتی در صضورت افزایش مقدار سوخت پاشیده شده به داخل سیلندر نیز به علت فقدان اکسیژن کافی ، احتراق کامل صورت نمی گیرد . بنابراین مساله رقیق بودن هوا موجب کم شدن قدرزت موتور در بلندیها و نقاط با فشار هوای کم می شود که توربو شارژرها با کمپرس کردن و افزایش جرم هوای ورودی به موتور این نقصیه را جبران می کنند .
سیستم سوخت رسانی انژکتوری در خورو متکی بر سنسورهایی است که شاخصهای گوناگونی از جمله مقدار اکسیژنموجود در گاز اگزوز را در خودرو اندازه می گیرد پس در صورت اضافه شدن سیستم توربو به این خودروها ، سیستم سوخت رسان به طور اتوماتیک مقدار سوختی را که باید توسط انژکتور به سیلندر پاشیده شود افزایش می دهد . البته یک توربو شارژر با قدرت تقویت بالا به یک خودرو انژکتوری افزوده شود ،ممکن است سیستم سوخت رسان خودرو قادر به تزریق سوخت کافی به سیلندر ها نباشد . این پدیده از عدم توانایی پمپ سوخت یا انژکتورها جهت انتقال حجم بالای سوخت ناشی می شود . در این موارد باید برای به دست آوردن حداکثر قدرت بازدهی ، سیستم سوخت رسانی نیز با توربو شارژر سازگاری پیدا کند .
از آنجا که هوا توسط توربو شارژر تحت فشار قرار می گیرد و سپس در سیلندر نیز توسط پیستون چندین برابر کمپرس می شود خطر ایجاد پدیده ضربه در موتور افزایش می یابد . پدیده ضربه هنگامی بالا رود که سوخت وارد شده قبل از جرقه زدن شمع هادر سیلندر بسوزد . به همین دلیل اغلب خودروهای دارای توربو شارژر نیاز به سوختهای با درجه اکتان بالا دارند . باید دقت شود در صورتی که فشار کمکی توربو شارژر نسبت به موتور خیلی بالا باشد باید تا حدی نسبت تراکم موتور کاهش یابد تا پدیده ضربه رخ ندهد .
متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.
دانلود فایل
این پره کمپرسور ابتدا با دقت اندازه گیری زیادی در نرم افزار CATIA مدل سازی شده و سپس جهت تحلیل در نرم افزار انسیس و فلونت، فرمت igs به آن اضافه گردیده. همان گونه که میدانیم پره کمپرسور موتور جت بیشتر تحت تاثیر نیروهای سیالاتی بوده ودر نرم افزارهایی همچون انسیس که میتوان نیروهای سازه ای و سیالاتی را ترکیب کرد، نتایج تحلیلی بهتری را در اختیار ما قرار میدهند
موتور دیزل گونهای موتور درونسوز است که در آن از چرخه دیزل برای ایجاد حرکت استفاده میشود. فرق اصلی آن با دیگر موتورها استفاده از احتراق در اثر تراکم است. در این گونه پیشرانهها عمل انفجار صورت نمیگیرد، بلکه مخلوط سوخت و هوا در اثر تراکم بسیار بالا بدون جرقه زدن متراکم میشوند و دور اصلی این پیشرانهها بر خلاف موتورهای بنزین سوز ۱۰۰۰ دور/دقیقه محسوب میگردند.
کلمه دیزل نام یک مخترع و مهندس آلمانی به نام رودلف دیزل است که در سال ۱۸۹۲ پس از چهارده سال کار شبانهروزی، نوع خاصی از موتورهای احتراق داخلی را به ثبت رساند، به احترام این مخترع اینگونه موتورها را موتورهای دیزل مینامند.
موتورهای دیزل، به انواع گستردهای از موتورها گفته میشود که بدون نیاز به یک جرقه الکتریکی میتوانند ماده سوختنی را شعلهور سازند. در این موتورها برای شعلهور ساختن سوخت از حرارتهای بالا استفاده میشود. به این شکل که ابتدا دمای اتاقک احتراق را بسیار بالا میبرند و پس از اینکه دما به اندازه کافی بالا رفت ماده سوختنی را با هوا مخلوط میکنند.
برای سوزاندن یک ماده سوختی به دو عامل حرارت و اکسیژن نیاز است. اکسیژن از طریق مجاری ورودی موتور وارد محفظه سیلندر میشود و سپس بوسیله پیستون فشرده میگردد. این فشردگی آنچنان زیاد است که باعث ایجاد حرارت بسیار بالا میگردد. سپس عامل سوم یعنی ماده سوختنی به گرما و اکسیژن افزوده میشود که در نتیجه آن سوخت شعلهور میشود.
در سال ۱۸۹۰ میلادی آکروید استوارت حق امتیاز ساخت موتوری را دریافت کرد که در آن هوای خالص در سیلندر موتور متراکم میگردید و سپس (به منظور جلوگیری از اشتعال پیشرس) سوخت به داخل هوای متراکم شده تزریق میشد، این موتورهای با فشار پایین بودند؛ و برای مشتعل ساختن سوخت تزریق شده از یک لامپ الکتریکی و یا روشهای دیگر در خارج از سیلندر استفاده میشد.
در سال ۱۸۹۲ دکتر رودلف دیزل آلمانی حق امتیاز موتور طراحی شدهای را به ثبت رساند که در آن اشتعال ماده سوختنی، بلافاصله بعد از تزریق سوخت به داخل سیلندر انجام میگرفت. این اشتعال عامل حرارت زیادی بود که در اثر تراکم زیاد هوا بوجود میآمد. وی ابتدا دوست داشت که موتور وی پودر زغال سنگ را بسوزاند ولی به سرعت به نفت روی آورد و نتایج قابل توجهی گرفت.
طی سالهای متمادی پس از اختراع موتور دیزل، از این نوع موتور عمدتاً و منحصراً در کارهای درجا و سنگین از قبیل تولید برق، تلمبه کردن آب، راندن قایقهای مسافری و باری و همچنین برای تولید قدرت جهت رفع بعضی از نیازهای کارخانجات استفاده میشد. این موتورها سنگین، کم سرعت، دارای یک یا چند سیلندر و از نوع دوزمانه یا چهارزمانه بودند.
پیشرفت بیشتر موتورهای دیزل، تا توسعه سیستمهای پیشرفته تزریق سوخت در دهه ۱۹۳۰ طول کشید. در این سالها رابرت بوش تولید انبوه پمپهای سوخت پاش خود را آغاز کرد. توسعه پمپهای سوخت پاش (پمپهای انژکتور) با توسعه موتورهای کوچکی که برای استفاده در خودروها مناسب بودند متعادل شد.
موتورهای دیزل سبکتری که سرعتشان نیز بالا بود در سال ۱۹۲۵ به بازار عرضه شدند. با آنکه پیشرفت در ساخت این موتورها کند بود. اما در سال ۱۹۳۰ موتورهای دیزل قابل اطمینان که به خوبی طراحی شدهبودند و چند سیلندر و سریع نیز بودند به بازار عرضه شد. این پیشرفت تا پایان جنگ جهانی دوم برای مدتی کند بود. لیکن از آن تاریخ تاکنون طراحی و تولید این موتورها به طریقی پیشرفت نموده است که امروزه استفاده گسترده و فراگیر از موتورهای دیزل را شاهد هستیم.
پیستون از بالاترین مکان خود (نقطه مرگ بالا) به طرف پایینترین مکان خود در سیلندر (نقطه مرگ پایین) حرکت میکند در این زمان سوپاپ تخلیه بسته است و سوپاپ هوا باز است. با پایین آمدن پیستون یک خلأ نسبی در سیلندر ایجاد میشود و هوای خالص از طریق مجرای سوپاپ هوا وارد سیلندر میگردد. در انتهای این زمان سوپاپ هوا بسته شده و هوای خالص در سیلندر حبس میگردد.
پیستون از نقطه مرگ پایین به طرف بالا (تا نقطه مرگ بالا) حرکت میکند و در حالیکه هر دو سوپاپ بستهاند (سوپاپ هوا و سوپاپ تخلیه) هوای داخل سیلندر متراکم میگردد و نسبت تراکم به ۱۵ تا ۲۰ برابر میرسد. فشار داخل سیلندر تا حدود ۴۰ اتمسفر بالا میرود و بر اثر این تراکم زیاد حرارت هوا داخل سیلندر به شدت افزایش یافته و به حدود ۶۰۰ درجه سانتیگراد میرسد.
در انتهای زمان تراکم در حالیکه هر دو سوپاپ همچنان بستهاند و پیستون به نقطه مرگ بالا میرسد مقداری سوخت روغنی (گازوئیل) به درون هوا فشرده و داغ موجود در محفظه احتراق پاشیده میشود و ذرات سوخت در اثر این درجه حرارت زیاد محترق میگردند. پس از خاتمه تزریق سوخت عمل سوختن تا حدود ۳/۲ از زمان قدرت ادامه پیدا میکند.
فشار زیاد گازهای منبسط شده (به علت احتراق) پیستون را به طرف پایین و تا نقطه مرگ پایین میراند. حرکت پیستون از طریق شاتون به میللنگ منتقل میشود و موجب گردش میللنگ میگردد. در این مرحله حرارت گازهای مشتعل شده به ۲۰۰۰ درجه سانتیگراد میرسد و فشار داخل سیلندر تا حدود ۸۰ اتمسفر افزایش مییابد.
با رسیدن پیستون به نقطه مرگ پایین در مرحله قدرت، سوپاپ تخلیه باز میشود و به گازهای سوخته تحت فشار اولیه اجازه میدهد سیلندر را ترک کند. پس پیستون از نقطه مرگ پایین به طرف بالا حرکت میکند و تمام گازهای سوخته را بیرون از سیلندر میراند. در پایان پیستون یکبار دیگر به طرف پایین حرکت میکند و با شروع زمان تنفس سیکل جدیدی آغاز میگردد.
در این نوع موتورهای دوزمانه سوپاپ تنفس هوای تازه، نظیر آنچه در موتورهای چهارزمانه ذکر شد وجود ندارد؛ و به جای آن در فاصله معینی از سرسیلندر، مجراهایی در بدنه سیلندر تعبیه شده است؛ که پیستون در قسمتی از مسیر خود جلوی آنها را میبندد، اصول کار این موتورها در دوزمان است، که در واقع در هر دور چرخش میللنگ اتفاق میافتد.
پیستون از نقطه مرگ پایین به طرف بالا و تا نقطه مرگ بالا حرکت میکند. در این زمان پیستون پس از عبور از جلو مجاری تنفس هوای تازه را تاحد معینی متراکم میسازد. در طول این زمان سوپاپ تخلیه که در قسمت فوقانی سیلندر و در داخل سرسیلندر قرار دارد کماکان بسته مانده است.
در انتهای زمان اول مقداری سوخت روغنی (گازوئیل) به صورت پودر شده به درون هوای متراکم شده و داغ موجود در محفظه احتراق پاشیده میشود و ذرات سوخت محترق میگردد. فشار زیاد گازهای محترق شده پیستون را به طرف پایین میراند. پیستون در مسیر حرکت روبه پایین خود جلو مجاری تنفس هوای تازه را باز میکند. در این موقع هوای تازه به شدت وارد سیلندر میگردد. در همین حال سوپاپ تخلیه نیز بازمیگردد و گازهای حاصل از احتراق بوسیله هوای تازه از سیلندر خارج میگردند. پس از رسیدن پیستون به نقطه مرگ پایین سیکل جدیدی آغاز میشود. نقطهٔ مرگ بالا همان T.D.C است. نقطهٔ مرگ پائین همان B.D.C است.